

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

PROGRAMA DE MAESTRÍA Y DOCTORADO EN CIENCIAS QUÍMICAS

"Síntesis de 5,6-dihidropirrolo [2,1-a]

isoquinolinas y su evaluación citotóxica"

TESIS PARA OPTAR POR EL GRADO DE:

DOCTORA EN CIENCIAS

PRESENTA:

M. en C. Rosa María Chávez Santos

TUTOR: DR. Roberto Martínez

Instituto de Química

Ciudad Universitaria, CD. MX. Noviembre 2017

El presente trabajo se realizó en el laboratorio 2-11 del Instituto de Química de la Universidad Nacional Autónoma de México bajo la asesoría del Dr. Roberto Martínez, con el apoyo económico de la beca de doctorado otorgada por el Consejo Nacional de Ciencia y Tecnología (No. de becario 223441) y el financiamiento del proyecto No. 131295 de CONACyT.

Los resultados de este trabajo fueron presentados en el:

- 46° Congreso Mexicano de Química organizado por la Sociedad Química de México llevado a cabo en Querétaro 2011.
- Simposio interno del Instituto de Química, UNAM en los años 2011, 2012 y 2014.
- "QUIMIUNAM" organizado por el posgrado en Ciencias Químicas de la UNAM en el año 2013.
- 11º Reunión de la Academia Mexicana de Química Orgánica llevado acabo en Chihuahua 2015.

Los resultados de este trabajo de investigación fueron publicados en la revista Chemical and Pharmaceutical Bulletin con el título: **5,6-dihydropyrrolo**[**2,1-***a*]isoquinolines as alternative of new drugs with cytotoxic activity.

Chem. Pharm. Bull. 2017, 65, 973.

http://doi.org/10.1248/cpb.c17-00409

Agradecimientos

- A la UNAM por ser mi casa de estudios y permitirme desarrollar mi posgrado.
- Al Dr. Roberto Martínez por la oportunidad de incorporarme en su grupo de investigación, por su paciencia, perseverancia y constante exhortación hacia la excelencia.
- Mi comité tutor Dr. Mario Ordoñez Palacios y Dr. Sebastian Lira Rocha por todos sus aportes y consejos que fueron esenciales para la culminación de este trabajo.
- Al personal técnico del Instituto de Química por su apoyo en la realización de las técnicas de IR, RMN, EM en especial a la Q. Rocío Patiño, Q. Ángeles Peña, M. en C. Elizabeth Huerta, Dra. Beatriz Quiroz, I.Q Luis Velasco, Dr. Javier Pérez, Dra. Carmen García y Dra. Ma- Teresa Ramírez por las prubas de citotoxicidad.
- Al Dr. Rubén Omar Torres Ochoa por todo su esmero, dedicación, paciencia y asesoría técnica para transmitirme sus conocimientos y acompañarme en el desafio de la investigación.
- Al **Dr. Paul E. Reyes G** y el **M. en C. José Solano B.** Por toda la asesoría técnica brindada en el desarrollo de mi tesis.
- Al CONACyT por la beca otorgada 223441, el financiamiento del proyecto 131295 y DGAPA por el financiamiento del proyecto PAPIIT IN213407.
- Al Jurado que con sus comentarios enriquecieron mi trabajo de tesis.
- A mis **Padres**, **Hermanos y Familiares** por todo su apoyo y amor incondicional en cada etapa de mi vida, por ser ejemplo de tenacidad y perseverancia.
- A mis amigos y compañeros del posgrado que con su grata compañia volvieron cada día dentro del aula, un acumulo de sueños conquistables.

iii

Lista de abreviaturas y fórmulas

ATC	ácido tricloroacético				
°C	Grados Celcius				
cAMP	Adenosín monofosfato cíclico				
cGMP	Guanosín monofosfato cíclico				
ccf	Cromatografía en capa fina				
CDI	1,1-carbonildiimidazol				
CML	Leucemia Mieloblástica Crónica				
δ	Desplazamiento químico				
DCM	Diclorometano				
DCC	Diciclohexilcarbodiimida				
DCU	Diciclohexilurea				
DLP	Peróxido de dilaurilo				
DMF	Dimetilformamida				
DMSO	Dimetilsulfóxido				
EMAR	Espectrometría de masas de alta resolución				
EMIE	Espectrometría de masas por impacto electrónico				
g	gramos				
h	hora				

НСТ-15	línea celular de carcinoma de colon				
IC ₅₀	concentración inhibitoria 50				
INEGI	Instituto Nacional de Estadística y Geografía				
IR	infrarrojo				
J	Constante de acoplamiento				
K-562	Línea celular de Leucemia Mieloblástica Crónica.				
$[\mathbf{M}]^+$	Ión molecular				
MCF-7	línea celular de carcinoma mamario				
Me	metilo				
MeTosMIC	1 - ((1-isocianoetil) sulfonil) -4-metilbenceno				
MHz	Megahertz				
mg	miligramos				
min	minutos				
mL	mililitros				
μΜ	micromolar				
m/z.	relación masa carga				
nM	nanomolar				
OMS	Organización Mundial de la Salud				
PC-3	línea celular de carcinoma prostático				
Pd/C	Paladio sobre carbono				

PDE	fosfodiesterasa				
p.f.	Punto de fusión				
Ph ₃ P	Trifenilfosfina				
ppm	partes por millón				
RMN- ¹³ C	Resonancia magnética nuclear de carbono 13				
RMN- ¹ H	Resonancia magnética nuclear de protón				
SKLU-1	línea celular de carcinoma pulmonar				
SNC	Sistema nervioso central				
t.a.	Temperatura ambiente				
TEA	Trietilamina				
TEBAI	Ioduro de tetrabutilamonio				
TMS	Trimetilsilano				
UV	Radiación ultravioleta				
U-251	línea celular de carcinoma proveniente del sistema nervioso central				
VHB	virus de hepatitis B				
VHC	virus de la hepatitis C				
VPH	virus del papiloma humano				

Resumen

El presente trabajo se llevó a cabo la síntesis de 15 análogos de la pirrolo[2,1a]isoquinolina, con buenos rendimientos, en tres pasos de reacción utilizando ésteres α,β insaturados como materia de partida. Además, estos compuestos se evaluaron en seis líneas celulares PC-3 (próstata), U-251 (SNC), K-562 (leucemia), HCT-15 (colon), MCF-7 (mama), y SKLU-1 (pulmón) para analizar si existe una relación entre la actividad citotóxica que presentan y las propiedades electrónicas, así como la aromaticidad del sustituyente en la posición C-2 de la pirroloisoquinolinas. Aunque los resultados no mostraron claramente si las propiedades electrodonadoras o electroatractoras de los sustituyentes unidos al fenilo en la posición C-2 de las pirroloisoquinolinas, disminuyen el crecimiento de las células tumorales, la investigación permitió determinar que los compuestos 3-hidroxi (4d) y 3-cloro (4j) tienen actividades citotóxicas considerables. También, se encontró que los valores de IC₅₀ de estos compuestos eran comparables a los de los fármacos comerciales como el Topotecán, Irinotecán, Etopósido, Tamoxifeno y Cisplatino. El compuesto 4d, mostró ser un excelente agente anti-prostático, anti-cáncer de colon y anti-cáncer de pulmón, mientras que el compuesto 4j destaca como un agente anti-leucémico y anti-cáncer de mama

Abstract

In this study, the pyrrolo[2,1-*a*]isoquinolines **4a-n** were synthesized in good yields in a three steps synthesis from the corresponding α , β -unsaturated esters as starting materials. These compounds were tested on six human cancer cells lines to measure the cytotoxic activity as a function of the electronic properties and aromaticity of the substituent at the C-2 position of the pyrroloisoquinoline. Although our results did not clearly reveal whether electron-donating or electron-withdrawing substituents at the C-2 position of the phenyl substituent in the isoquinolines **4a**–d enhanced or inhibited tumor cell line growth, this study identified novel 3-hydroxy (**4d**) and 3-chloro (**4j**) derivatives with powerful cytotoxic activities. The IC₅₀ values of these compounds were found to be comparable to those commercially available Topotecan, Irinotecan, Etoposide, Tamoxifen, and Cisplatin. The lead compound, derivative **4d**, was selected for additional development toward novel anti-prostate, anti-colon, and anti-lung cancer agents, whereas compound **4j** shows promise as an anti-brain, anti-leukemia, and anti-breast cancer agent.

Índice

1. Introducción	1
1.1 El cáncer en México	2
1.2 Las pirrolo[2,1- <i>a</i>]isoquinolinas	2
1.3 Planteamiento del problema	5
2. Antecedentes	6
2.1 El cáncer	7
2.2 Diseño de fármacos	9
2.3 Síntesis de pirroloisoquinolinas	12
3. Hipótesis	19
4. Objetivos	19
5. Retrosíntesis	20
6. Discusión de resultados	22
6.1 Parte Química	23
6.1.1 Síntesis de las pirroloisoquinolinas 4a', 4a-4c	23
6.1.2 Síntesis de las pirroloisoquinolinas 4d-4k	29
6.1.3 Síntesis de las pirroloisoquinolinas 4i-4l	32
6.1.4 Síntesis de las pirroloisoquinolinas 4m-40	35
6.2 Parte biológica	39

6.2.1 Efectos en la actividad antiproliferativa cuando se modifica el grupo	
metilciclohexilpiperazinilo	40
6.2.2 Efectos en la actividad antiproliferativa cuando se introducen grupos	
electrodonadores y electroatractores en la posición -meta del grupo C-2 fenilo	42
6.2.3 Efectos en la actividad antiproliferativa cuando cambia la aromaticidad	en
los sustituyentes unidos en la posición C-2	45
7. Sección experimental	50
7.1 Síntesis de los pirroles 2a'-20	53
7.2 Reacción de N-alquilación 3a'-30	60
7.3 Síntesis de dihidropirrolo[2,1- <i>a</i>]isoquinolinas	
8. Medición de la actividad Biológica	77
9. Conclusiones	81
10. Bibliografía	84
11. Anexos	88

INTRODUCCIÓN

1.1 El cáncer en México

En México el cáncer es la tercera causa de muerte y según estimaciones de la Unión Internacional contra el Cáncer, cada año se suman más de 128,000 casos de mexicanos, según las cifras más recientes del Instituto Nacional de Estadística y Geografía (INEGI), existen diferentes tipos de cáncer [1][2] y en nuestro país las 5 tipologías más diagnosticadas según cifras de Globocan y la Organización Mundial de la Salud (OMS) son: próstata, mama, cervicouterino, pulmón y colon.

L J			
Tipo de cáncer	Número de incidencias	Número de muertes	
Mama	20444	5680	
Próstata	14016	6367	
Cérvix	13960	4769	
Colon y recto (combinados)	8651	4694	
Pulmón	8439	7608	

 Tabla 1: Estadísticas de casos mas comunes de cáncer en México [3]

Siendo el cáncer un problema de salud pública, es esencial la búsqueda de moléculas que generen alternativas para el desarrollo de medicamentos que representen una alternativa terapeútica.

1.2 Las pirrolo[2,1-*a*]isoquinolinas.

Las pirrolo[2,1-a]isoquinolinas son compuestos heterocíclicos [4] cuya estructura proviene de la fusión de un anillo de isoquinolina y uno de un pirrol y que comparten un átomo de nitrógeno lo cual, puede generar 2 isómeros figura **1**

Figura 1. Isomeros de Pirroloisoquinolina

Este núcleo está presente en diversos productos naturales de tipo alcaloide [5] que han mostrado diversas actividades biológicas como Antivirales [6], Antidepresivos [7], Antinecroticos [8], Inhibidores de topoisomerasas [9], Antihiperglucémicos [10], Antimicrobianos [11]. En la figura **2** se muestran algunos ejemplos de pirroloisoquinolinas con actividad biológica.

Figura 2. Ejemplos de alcaloides que contienen el núcleo de pirroloisoquinolina y su actividad biológica.

En el año 2004 [12][13], Niewohner propuso una ruta de síntesis para obtener derivados de la dihidropirrolo [2,1-*a*] isoquinolina **I** (Figura **3**), debido a que inhibía la fosfodiesterasa PDE 10a, enzima que se caracteriza por estar expresada de forma particular y destacada en áreas específicas de diferentes órganos, entre los cuales se encuentran una amplia variedad de estirpes celulares y tejidos tumorales, a saber, del pulmón, mama, páncreas, cerebro, próstata y ovario, indicando que la PDE 10a puede desempeñar un papel importante en el crecimiento y/o supervivencia de las células tumorales en condiciones de generación elevada de cAMP y/o cGMP.

Posteriormente, Martínez [14] describió una síntesis alterna de **I**, y sus análogos **II**, **III** y **IV**, en 4 pasos de reacción, con mejores rendimientos (Figura 3). La evaluación de su actividad antiproliferativa, en las líneas celulares PC-3 (próstata), U-251 (SNC), K-562 (leucemia), HCT-15 (colon), MCF-7 (mama), y SKLU-1 (pulmón) (Tabla 2), permitió establecer las siguientes relaciones estructura-actividad: el sustituyente etoxicarbonilo (-CO₂Et) unido a C-1 juega un papel importante en la actividad de este tipo de estructuras, debido a que cuando fue cambiado por un grupo nitrilo (-CN), la actividad fue nula; el fenilo unido a C-2 debe tener un sustituyente en la posición *meta*, ya que se observó que cuando esta posición no está sustituida (**II**), la actividad antiproliferativa disminuye; en especial, cuando el sustituyente *meta* fue el grupo amino (**III**), la actividad en la línea celular HCT-15 (colon) es del orden nanomolar. Otra observación relevante fue que al cambiar el grupo fenilo unido a C-2, por el grupo tiofenilo (-C₄H₃S), generando el compuesto **IV**, éste tiene una mayor actividad en las líneas celulares de PC-3 (próstata), K-562 (leucemia) y MCF-7 (mama) que su análogo **II** (-C₆H₅).

4

Figura 3. Dihidropirrolo [2,1-a] isoquinolinas con actividad antiproliferativa.

Tabla 2: Valores de IC50 (μ M) de las dihidropirroloisoquinolinas I, II, III, IV para lainhibición de crecimiento de las 6 líneas celulares evaluadas

Fig.	PC-3	U-251	K-562	HCT-15	MCF-7	SKLU-1
Ι	0.16±0.01	0.05±0.009	0.16 ± 0.01	0.02±0.010	5.58 ± 0.040	0.02 ± 0.001
II	18.15±0.60	4.86 ± 0.600	76.78±7.30	0.14±0.060	25.2 ± 2.000	0.59 ± 0.005
III	21.20±1.20	5.96±0.500	2.5 ± 0.800	0.01±0.003	1.3 ± 0.100	0.10±0.01
IV	8.47±0.23	6.99±0.670	4.07 ± 0.490	0.59 ± 0.050	7.41±0.090	2.13±0.030

1.3 Planteamiento del problema

Los resultados preliminares antes mencionados sugieren que, para saber cuáles son los sustituyentes más adecuados para que se obtengan compuestos con mejor actividad antiproliferativa que el compuesto I, se debe explorar la influencia que tiene sobre la actividad el sustituyente ciclohexilmetilpiperazinilo unido al carbonilo de la amida en posición *meta* del 2-fenilo, los grupos electrodonadores, electroatractores y halógenos en la posición *meta* del 2-fenilo, y la aromaticidad del sustituyente unido a C-2.

ANTECEDENTES

2. ANTECEDENTES

2.1 El Cáncer

El cáncer es un conjunto de enfermedades que se caracteriza por el crecimiento [15] y diseminación incontrolados de células que pueden pertenecer a cualquier parte del cuerpo. El conjunto de éstas es conocido como tumor y suele invadir el tejido circundante desencadenando la metástasis en diferentes puntos del organismo. El proceso que lleva a la generación de esta enfermedad se conoce como carcinogénesis, durante el cual una o más células adquieren capacidades con un potencial transformante (Figura 4) que pueden generar neoplasia [16]

Figura 4. Capacidades adquiridas en el proceso carcinógenico

El estudio del proceso carcinogénico [17] se divide en tres etapas (Figura 5): a) iniciación, que hace referencia a mutaciones no letales que sufren las células y pueden ser revertidas mediante sistemas de reparación del DNA; b) promoción, ocurre cuando las células iniciadas evitan la muerte celular, producto de una acumulación de mutaciones y mecanismos de presión selectiva que provocan la proliferación celular y generan una progenie de células en estado pre-neoplásico, estás pueden ser controladas por eventos de senescencia o apoptosis; esta etapa ya no es reversible pero sí contenible; y c) Progresión, se refiere a las alteraciones que soportan las células pre-neoplásicas las cules permitirán convertirse en células neoplásicas generando una proliferación anormal que origina un tumor con capacidad de diseminarse por el proceso de metástasis.

Figura 5. Etapas del proceso carcinogénico.

En el 2012, se informó que hubo 14 millones de personas diagnosticadas con cáncer, de las cuales 8,2 millones fallecieron a causa de esta enfermedad. Estos datos prevén que el número de casos por cáncer aumentará a 22 millones en las siguientes dos décadas.

En la actualidad existe 3 terapias más comúnmente utilizadas para tratar el cáncer y son: cirugía, radioterapia y quimioterapia [18]. Para algunos tipos de cánceres diseminados, la quimioterapia es la única terapia eficaz porque distribuye los fármacos anticancerígenos a través del sistema circulatorio y/o linfático [19]. Por lo tanto, uno de los grandes retos de los grupos de investigación en el área químico-biológica es la de sintetizar compuestos químicos que reúnan una serie de características tales como aumento de la respuesta farmacológica deseada a menores dosis, selectividad, disminución de los efectos secundarios y disminución de costos [20].

2.2 DISEÑO DE FARMACOS

El diseño de fármacos es una herramienta que ayuda en el proceso de descubrimiento de nuevas drogas [21] mediante el uso de información estructural sobre una respuesta biológica en dianas terapeúticas esto se da con ensayos de tamizaje. Aquellas moléculas que muestran actividad biológica son nombradas como "hits" y posterior a esto se procede a mejorar la actividad biológica encontrada generando compuestos que tengan propiedades farmacéuticas notables, incluyendo baja toxicidad, solubilidad acuosa adecuada así; como facilitar una formulación vía oral, estos compuestos son conocidos como "líderes o cabezas de serie" [22].

Usualmente los hits son encontrados por un ensayo de tamizaje en un número extenso de moléculas, mientras que los compuestos líderes son descubiertos a partir de modificaciones estructurales de los hits. Las modificaciones pueden llevarse a cabo mediante los siguientes métodos:

9

- Método tradicional
 - o Pruebas de ensayo y error
 - o Azar
- Método racional
 - Blanco terapéutico o enfermedad
 - o Compuestos químicos destinados a una función molecular
 - Modificación estructural
 - Variación de sustituyentes
 - Cambio en la longitud de cadenas laterales
 - Expansión o contracción de anillos aromáticos
 - Simplificación estructural
 - Bioisosterismo [23].

En la actualidad encontramos que muchos alcaloides naturales sirven de inspiración para el diseño de nuevos heterociclos [24], que mediante las manipulaciones moleculares mejoran la actividad biológica de los ya existentes, tal es el caso de la Camptotecina la cual, es conocida por su relevante actividad citotóxica. Sin embargo, la baja solubilidad genero la necesidad de crear análogos conduciendo a la síntesis del Exatecan, Irinotecan y Topotecan (Figura 6) el cual, es un inhibidor de la topoisomerasa-1 y tiene una potente actividad contra carcinoma pancreático, además no presenta problemas de solubilidad [25].

Figura 6. Variaciones estructurales sobre la Camptotecina.

El diseño de fármacos es una excelente herramienta para mejorar las interacciones entre los sitios receptores y los fármacos permitiendo una mejor absorción en el organismo. Otro ejemplo que ilustra la importancia de esto, son los fármacos inhibidores de la anhidrasa carbónica II [26] que está vinculada a los problemas con glaucoma, donde el medicamneto Metazolamida fue mejorado mediante el cambio estructural de un grupo acetamida por una sulfonomida cíclica generando la Dorzolamina facilitando con esto la formulación oftalmológica y su absorción, posterior a esto se realizó una extensión de cadena sobre la Dorzolamida para generar Brinzolamida, cambio que potencializó su efecto inhibitorio de 31 nM a 3.1 nM. (Figura 7)

Figura 7. Modificación estructural de Metazolamida.

El esquema 1 muestra algunas de las rutas de síntesis más relevantes, descritas a la fecha, para obtener pirrolo[2,1-*a*]dihidroisoquinolinas, y como se puede observar hay dos estrategias: 1) construcción del anillo de pirrol al final de la síntesis ó 2) construcción del anillo de isoquinolina también al final de la síntesis.

2.3 Síntesis de pirrolo[2,1-*a*]isoquinolinas.

Debido al interés biológico que tiene el anillo de pirroloisoquinolina, diferentes grupos de investigación se han centrado en el desarrollo de metodologías que permitan acceder a este triciclo, en el esquema 1 se muestran algunos métodos reportados en la literatura.

Esquema 1. Síntesis para el sistema pirrolo[2,1-*a*]dihidroisoquinolina.

Dumitrascu y colaboradores [4b] describieron la síntesis de compuestos tipo pirrolo[2,1-*a*] isoquinolina haciendo una reacción de cicloadición 1,3-dipolar de 3 componentes, que permitió acceder a una gran variedad de pirroloisoquinolinas en un solo paso de reacción, logrando la adición de diferentes bromoacetofenonas en el anillo de isoquinolina para posteriormente formar los triciclos.

Esquema 2. Síntesis de pirrolo[2,1-*a*]isoquinolinas mediante una reacción de cicloadición 1,3-dipolar de 3 componentes.

Varlamov y colaboradores [27] realizaron la síntesis de análogos de la pirrolo[2,1*a*]dihidroisoquinolina mediante la reacción de multicomponentes de 1-arildihidroisoquinolinas con alquinos y alcoholes activados, que inicia con la adición de Michael entre el alquino correspondiente sobre el nitrógeno de la isoquinolina, desencadenando una reacción en cascada que concluye con la pérdida de agua y la formación de los compuestos tricíclicos correspondientes.

Esquema 3. Síntesis de pirroloisoquinolinas mediante reacciones multicomponente.

Anderson y colaboradores [28], iniciaron la síntesis de los compuestos tipo bis(carbamato) con Acetilendicarboxilato de dimetilo (DMAD) y los dioles correspondientes en anhídrido acético a 80°C para que posteriormente, mediante el uso de reacciones de cicloadición 1,3dipolar, accedieran a los triciclos correspondientes.

Esquema 4. Síntesis pirrolo[2,1-*a*]isoquinolinas utilizando una reacción de cicloadición 1,3-dipolar

Por otra parte, Danodia y colaboradores [29] utilizaron una reacción tipo tándem catalizada por Cu, que se caracteriza por la activación de sistemas π , que facilitan el ataque nucleofílico intramolecular entre grupos arilo y alquino, para formar enlaces C-C y obtener así las pirroloisoquinolinas correspondientes.

Esquema 5. Síntesis Indolo-pirrolo[1,2-a]isoquinolinas mediante una reacción tipo tándem.

Niewoehner y colaboradores, [12] [13] patentaron la síntesis de una serie de derivados de la pirrolodihidroisoquinolina a partir de la adición de Michael de enaminas a nitroalquenos, en algunos casos, se forma *in situ* a partir del carboxibenzaldehído correspondiente y el nitroalcano.

Esquema 6. Síntesis pirrolo[2,1-*a*]isoquinolinas utilizando la reacción de Nef.

Posteriormente en el 2010 Martínez y colaboradores [14] describieron la síntesis del compuesto **I**, y análogos, en donde la construcción del triciclo se inicia con la formación del pirrol trisustituido seguido de una reacción de *N*-alquilación y se concluye con un cierre intramolecular vía radicales libres, que favorece la formación del enlace C-C.

Esquema 7. Síntesis pirrolo[2,1-*a*]isoquinolinas mediante una ciclación intramolecular vía radicales libres.

3. Hipótesis

La modificación estructural de compustos líderes permitirá la obtención de moléculas con mejor actividad antiproliferativa.

4. Objetivo

Sintetizar las pirroloisoquinolinas **4a-n** y evaluar su actividad antiproliferativa en las líneas celulares cancerosas PC-3 (próstata), U-251 (SNC), K-562 (leucemia), HCT-15 (colon), MCF-7 (mama), and SKLU-1 (pulmón).

4.1 Objetivos particulares

• Llevar a cabo la síntesis de las pirroloisoquinolinas **4a'**, **4a-4c** (Figura **8**) para evaluar el efecto de modificar el grupo ciclohexilmetilpiperazinilo en la actividad antiproliferativa.

Figura 8.

Realizar la síntesis de las pirroloisoquinolinas 4d', 4d-4l (Figura 9) para evaluar el efecto de colocar grupos electrodonadores, electroatractores y halógenos en la posición *meta* del grupo 2-fenilo, en la actividad antiproliferativa.

Figura 9.

• Sintetizar los compuestos **4m-4o** (Figura **10**) para evaluar el efecto de modificar la aromaticidad del sustituyente unido al C-2, en la actividad antiproliferativa.

Figura 10.

5. Retrosíntesis

La propuesta para sintetizar los compuestos **4a'**, **4a-4n** se muestra en el esquema **8**, que indica que el anillo tricíclico de la dihidropirroloisoquinolina (A), provendría de la ciclación radicalaría intramolecular del pirrol tetrasustituido (B), el cual a su vez derivaría de una reacción de *N*-alquilación entre el pirrol trisustituido (D) y el agente alquilante (C). El pirrol (D) resultaría de una reacción de Michael entre el reactivo Me-TosMIC (E) y el éster α , β insaturado (F), y este último de una reacción de Horner entre el fosfonato de etilo y los aldehídos correspondientes.

Esquema 8. Análisis retrosintético.

DISCUSIÓN DE RESULTADOS

6. Discusión y Resultados

6.1 Parte Química

6.1.1 Síntesis de las pirroloisoquinolinas 4a', 4a-4c.

La preparación de los compuestos **4a', 4a-4c** se inició con la síntesis del éster α , β -insaturado **5**, para lo cual se emplearon las condiciones de la reacción de Heck, [30] haciendo reaccionar el ácido *m*-iodobenzoíco con acrilato de etilo, trifenilfosfina, acetato de paladio como catalizador al 10% y TEA como base, en reflujo de acetonitrilo, obteniendo el éster α , β -insaturado **5**, como un sólido de color amarillo, con rendimiento del 90%. Su espectro de RMN de ¹H mostró que la configuración de la doble ligadura es *E*.

Esquema 9. Preparación del éster 5

Una vez obtenido el obteniendo el éster α , β -insaturado 5 se utilizó para la preparación de las amidas [31] 1a' y 1b, haciendo reaccionar el éster 5 con las aminas correspondientes, usando diferentes condiciones de reacción, las cuales se muestran en la tabla 3.

Esquema 10. Preparación de las amidas 1a' y 1b.

Tabla 3: Condiciones de reacción usadas para la obtención de los compuestos 1a' y 1b

Experimento	Agente acoplante	disolvente	Tiempo (hrs)	Temperatura	Rendimiento 1b (%)
1	CDI	THF	3	$58^{\circ}C \rightarrow t. a$	30
2	CDI	THF	1	58-60°C	Descomposición
3	DCC	DCM	4	0°C→t.a	80-85

Como se observa, al utilizar la diciclohexilcarbodimida (DCC) como agente acoplante y diclorometano (DCM) como disolvente, se obtuvieron las amidas correspondientes en un excelente rendimiento. En cada uno de los casos, la mezcla de reacción se purificó por cromatografía en columna flash, utilizando una fase móvil 9:1 de DCM: acetona, para el caso de la amida **1a**' y una fase móvil 6:4 de hexano: AcOEt, para el caso de la amida **1b**.

La síntesis del compuesto **1c** se inició con la preparación de la amida **6**, mediante la hidrólisis del 3-cianobenzaldehído, en presencia de H₂SO₄ (ácido sulfúrico) a 100 °C, por 1h, [32] en buenos rendimientos. La incorporación del éster α , β -insaturado al compuesto **6** se realizó utilizando las condiciones de reacción de Horner-Wadsworth-Emmons, [33] haciendo reaccionar con NaH en DMF, a una temperatura de 0°C; después se adicionó el fosfonato de etilo, disuelto en DMF, y enfrió la reacción a -40°C. Enseguida añadir el aldehído **6**, disuelto en DMF, y se dejó reaccionar por 4h. La purificación del crudo de reacción permitió obtener el éster **1c** en un 80% de rendimiento (Esquema **11**).

Esquema 11. Preparación del éster α , β -insaturado 1c.

El siguiente paso de la ruta de síntesis para obtener las pirroloisoquinolinas **4a'**, **4a-4c** es la formación de los pirroles trisustituido **2a'**, **2b** y **2c**, utilizando las condiciones de reacción de Van Leusen, para lo cual fue necesario preparar el isocianuro de 1-metil-*p*-toluensulfonilmetilo (Me-TosMIC), mediante la metilación del reactivo comercial isocianuro de *p*-toluensulfonimetilo (TosMIC) con yoduro de metilo, NaOH como base y una sal de amonio cuaternaria como catalizador de transferencia de fase. El Me-TosMIC se obtuvo con un 93 % de rendimiento (Esquema 12) [34].

En la Tabla **4** se muestran los ensayos realizados para la obtención de **E**, en los cuales se modificaron los equivalentes de CH_3I y la temperatura, encontrando que las condiciones idóneas para obtenerlo son 3 equivalentes del agente alquilante y una temperatura de 3-5°C.

Esquema 12. Preparación del reactivo Me-TosMIC (E).

TEMPERATURA (°C)	CH ₃ I (eq)	RENDIMIENTO (%)
7-10	3	70
7-10	5	55
3-5	3	95
3-5	5	80

Tabla 4: Optimización de las condiciones de reacción para obtener el Me-TosMIC (E)

El Me-TosMIC recién preparado se le hizo reaccionar con los ésteres α , β -insaturados **1a'**, **1b** y **1c**, de acuerdo al protocolo de reacción de Van Leusen, utilizando NaH como base y una mezcla de disolventes 2:1 de éter: DMSO, y después de 30 minutos de reacción se obtuvieron los pirroles trisustituidos **2a'**, **2b** y **2c**, en buenos rendimientos (Esquema **14**) [35]

Para la *N*-alquilación [36] de los pirroles **2a'**, **2b** y **2c**, se usó como agente alquilante el tosilato (**C**), el cual se preparó adicionando NBS (*N*-bromosuccinimida) al 3,4-dimetoxifeniletanol, en DCM, a 0-5 °C. Una vez terminada la adición, la mezcla de reacción se lleva a temperatura ambiente por 4 horas, y después de corroborar que la materia prima se había consumido, se adicionó el TsCl. El crudo de reacción obtenido fue purificado por cromatografía en columna, con una fase móvil 6:4 de hexano:AcOEt, obteniendo el 2-(2-bromo-4,5-dimetoxifenil)etanol (**C**), con un 83% de rendimiento. [37] (Esquema **13**).

Esquema 13. Preparación del agente alquilante C.

La reacción del agente alquilante (C) con cada uno de los pirroles trisustituidos 2a', 2b y 2c, utilizando NaH como base y DMSO como disolvente, por 6 horas y a temperatura ambiente, produjo los pirroles tetrasustituidos 3a', 3b y 3c los cuales se obtuvieron con rendimientos moderados (Esquema 14).

Por último, se llevó a cabo la preparación de los triciclos **4a'**, **4a-4c**, sometiendo a los compuestos **3a'**, **3b y 3c** a las condiciones de ciclación radicalaria oxidativa con hidruro de tributilestaño (n-Bu₃SnH) y peróxido de dilaurilo (DLP), en tolueno (Esquema **14**).

Por otra parte, el triciclo **4a**, se preparó mediante la desformilación de la dihidropirroloisoquinolina **4a'** utilizando hidrato de hidracina en EtOH [38].

Esquema 14. Síntesis de las pirroloisoquinolinas 4a', 4a-4c.

6.1.2 Síntesis de las pirroloisoquinolinas 4d-4k.

Para la síntesis de estas pirroloisoquinolinas se utilizaron como materia de partida los benzaldehídos comerciales **11**, **12** y **13**, y los aldehídos **9** y **10** se tuvieron que sintetizar. Así, el *m*-hidroxibenzaldehído se hizo reaccionar con el bromuro de bencilo para generar **9**, empleando dos condiciones de reacción, como se muestra en la Tabla **5**, obteniendo el compuesto **9** con un rendimiento del 95% cuando se utilizó K_2CO_3 como base y acetona como disolvente. Una vez que fueron optimizadas las condiciones de reacción para la obtención del aldehído **9**, fueron utilizadas para acceder al 3-metoxibenzaldehído **10**, mediante la metilación del 3-hidroxibenzaldehido con excelente rendimiento (Esquema **15**).

Esquema 15. Síntesis de los aldehídos 9 y 10.

Tabla 5: Variaciones sobre la metodología de obtención del aldehído 8.					
DISOLVENTE	TIEMPO TEMPERATURA RENDIMIENTO				
DMF [39]	4	80°C	88%		
Acetona [40]	3 reflujo 95%				

Los aldehídos **8-12** se sometieron a las condiciones de reacción de Horner-Wadsworth-Emmons para preparar los esteres α,β -insaturados **1d', 1e-1h**, con excelentes rendimientos (Esquema **16**). Los espectros de RMN de ¹H de cada uno de los esteres mostró que la doble ligadura E es favorecida sobre la Z, en una proporción 3:1.

Esquema 16. Síntesis de los ésteres α , β insaturados 1d', 1e-1h.

Los esteres α,β-insaturados 1d', 1e-1h, se hicieron reaccionar con Me-TosMIC, bajo las condiciones de reacción de van Leusen, para producir los pirroles 2d', 2e-2h en buenos rendimientos (Esquema 17). La alquilación de cada uno de los pirroles 2d', 2e-2h con (C), utilizando NaH como base y DMSO como disolvente, por 6 horas y a temperatura ambiente, produjo los pirroles tetrasustituidos 3d', 3e-3h en rendimientos moderados (Esquema 17). Finalmente, la preparación de los triciclos 4d', 4e, 4f y 4h se llevó a cabo sometiendo a los compuestos 3d', 3e, 3f y 3h, a las condiciones de ciclación radicalaría oxidativa con hidruro de tributilestaño (*n*-Bu₃SnH) y peróxido de dilaurilo (DLP), en tolueno (Esquema 17).

Por otra parte, la síntesis del triciclo **4d** se logró mediante la hidrogenólisis del compuesto **4d'** con Pd/C 30%, en EtOH como disolvente. [41][42]

Esquema 17. Síntesis de las pirroloisoquinolinas 4d',4d-4h.

Debido a que la reacción de ciclación radicalaria oxidativa del pirrol **3g** no procedió, se recurrió a ciclarlo utilizando acetato de Pd(II), trifenilfosfina y dietilamina, en acetonitrilo (condiciones tipo Heck), lo que permitió acceder al compuesto **4g** en rendimiento aceptable (Esquema **18**).

Esquema 18. Síntesis de la pirroloisoquinolina 4g.

6.1.3 Síntesis de las pirroloisoquinolinas 4i-4l

La síntesis de las pirroloisoquinolinas halogenadas en la posición *meta* del sustituyente 2fenilo **4i-4l**, se inició haciendo reaccionar los benzaldehídos comerciales **14-17** en las condiciones de Horner-Wadsworth-Emmons, lo que permitió obtener los cinamatos de etilo **1i-1l**, en excelentes rendimientos. Después, los compuestos **1i-1l**, se hicieron reaccionar con el Me-TosMIC, bajo las condiciones de reacción de van Leusen, para dar los pirroles **2i-2l**, en excelentes rendimientos (Esquema **19**).

La reacción del agente alquilante (C) con cada uno de los pirroles **2i-2l**, utilizando NaH como base y DMSO como disolvente, por 6 horas y a temperatura ambiente, generó los pirroles Nalquilados **3i-3l**, en rendimientos moderados (Esquema **19**).

La preparación de los triciclos **4i** y **4j**, procedió sin ningún inconveniente sometiendo a los compuestos **3i** y **3j** a las condiciones de ciclación radicalaría oxidativa del hidruro de tributilestaño (*n*-Bu₃SnH) y el peróxido de dilaurilo (DLP), en reflujo de tolueno (Esquema **19**)

Esquema 19. Síntesis de las pirroloisoquinolinas 4i-4l.

Sin embargo; utilizando estas condiciones no fue posible acceder a los triciclos 4k y 4l, a partir de los pirroles tetrasustituidos 3k y 3l, debido a que, en ambos casos, la reacción produjo varios compuestos que no se lograron separar, por lo que se procedió a explorar otras rutas alternas para su obtención.

La primera alternativa fue utilizar la reacción de Sandmeyer con la aminopirroloisoquinolina III, la cual se preparó, en buenos rendimientos, siguiendo la secuencia de reacciones que se muestran en el esquema **20** (Esquema **20**).

Esquema 20. Síntesis de la pirroloisoquinolina 4k'.

Una vez preparada la amina III se le trató con el nitrito de tertbutilo en acetonitrilo, a 0 °C para generar la sal de diazonio correspondiente, que al adicionarle bromuro de cobre (II) produjo [43] el triciclo 4k, en rendimiento aceptable (Esquema 21). Sin embargo, cuando se agregó ioduro de cobre (I), no se obtuvo la pirroloisoquinolina 4l, a pesar de que se hicieron modificaciones a las condiciones de reacción.

Esquema 21. Síntesis de las pirroloisoquinolinas 4k y 4l.

6.1.4 Síntesis de las pirroloisoquinolinas 4m-4o.

Para la síntesis de estas pirroloisoquinolinas se planteó utilizar como materia de partida los aldehídos comerciales **18**, **21** y **22**, pero debido a la reactividad del hidrógeno unido al nitrógeno del pirrol **18** en la secuencia de reacciones que se realizarían, se decidió protegerlo. Así, el compuesto **18** se hizo reaccionar con el dicarbonato de di*-ter*-butilo [(BOC)₂O)], en DCM. El seguimiento de la reacción indicó que está había procedido satisfactoriamente, pero cuando la mezcla de reacción se trató de purificar por cromatografía en columna, sólo se obtuvo el pirrol **18**. El método alterno de protección de pirroles con Cbz-Cl (cloroformiato de bencilo), en DMF por 16 horas a temperatura ambiente, resultó una buena opción ya que produjo el pirrol **20**, en buen rendimiento (Esquema **22**).

Esquema 22. Preparación del aldehído 20.

Los aldehídos **20, 21 y 22** se sometieron a las condiciones de reacción de Horner-Wadsworth-Emmons para preparar los esteres α , β -insaturados **1m'-1o**, con excelentes rendimientos, como se muestra en el esquema **23**. Los espectros de RMN de ¹H de cada uno de los esteres mostró que la doble ligadura E es favorecida sobre la Z, en una proporción 3:1.

Esquema 23. Preparación de los ésteres 1m'-1o.

Una vez sintetizados los esteres α , β -insaturados 1m', 1n y 1o, se les hizo reaccionar con Metil-TosMIC, bajo las condiciones de reacción de van Leusen, para producir los pirroles 2m', 2n y 2o, en buenos rendimientos (Esquema 24). La reacción del agente alquilante (C) con cada uno de los compuestos 2m', 2n y 2o, utilizando NaH como base y DMSO como disolvente, por 6 horas y a temperatura ambiente, produjo los pirroles tetrasustituidos 3m', 3n, y 3o en rendimientos moderados (Esquema 24).

La preparación de los triciclos **4m'**, **4n** y **4o**, procedió sin ningún inconveniente sometiendo a los compuestos **3m'**, **3n**, y **3o** a las condiciones de la ciclación radicalaría oxidativa con el hidruro de tributilestaño (*n*-Bu₃SnH) y el peróxido de dilaurilo (DLP), en tolueno (Esquema **24**). Por otra parte, la síntesis del triciclo **4m** se logró mediante la hidrogenólisis del compuesto **4m'** con Pd/C al 30%, en EtOH como disolvente y bajo atmósfera de hidrógeno, por 6 horas, obteniendo el triciclo en buenos rendimientos.

Esquema 24. Síntesis de las pirroloisoquinolinas 4m-4o.

ESPECTROSCOPÍA

Los datos espectroscópicos de IR, EM, RMN de ¹H y ¹³C de todos los compuestos sintetizados concuerdan con su estructura y están descritos en la parte experimental.

6.2 Parte biológica

Evaluación de la actividad citotóxica

Las pruebas de actividad citotóxica se efectuaron en el Laboratorio de Pruebas Biológicas del Instituto de Química de la UNAM. Las pruebas se realizaron utilizando el método de tinción de proteínas con Sulforodamina B (SBR) que se fundamenta en el porcentaje de inhibición del crecimiento celular. Las líneas celulares evaluadas fueron las siguientes: U-251: Sistema Nervioso Central (SNC), PC-3: Carcinoma prostático humano, K562: Leucemia Mieloblástica Crónica (CML), CT-15: Cáncer de colon, MCF-7: Cáncer de mama, SKUL: Cáncer de pulmón. Se emplearon como referencia los siguientes fármacos comerciales: Topotecan, Irinotecan, Etoposido, Tamoxifeno y Cisplatino. La primera evaluación se realizó a una concentración de 50 µM con el objetivo de hacer una primera clasificación de los compuestos en activos o inactivos, en función del porcentaje de inhibición del crecimiento. Se consideran activos todos aquellos compuestos que a la concentración utilizada presentan más del 50 % de inhibición del crecimiento celular; los compuestos que presenten un porcentaje menor al especificado anteriormente se consideran inactivos. Para una mejor comprensión de los resultados obtenidos, la discusión que a continuación se describe se organizó de acuerdo a los objetivos planteados.

6.2.1 Efecto en la actividad antiproliferativa cuando se modifica el grupo metilciclohexilpiperazinilo

Así, la primera discusión se centra en el efecto que tuvo la modificación del grupo piperazinilo en la actividad mostrada (Figura 11), mediante el análisis de los valores determinados para cada una de las variantes propuestas (Tabla 6).

Figura 11. Compuestos sintetizados para evaluar el efecto en la actividad antiproliferativa del grupo metilciclohexilpiperazinilo.

Comp.	PC-3	U-251	K-562	HCT-15	MCF-7	SKLU-1
	(próstata)	(SNC)	(leucemia)	(colon)	(mama)	(pulmón)
Ι	0.16±0.01	0.05±0.009	0.16±0.010	0.02±0.01	5.58 ± 0.04	0.02±0.001
4a'	10.20±1.40	11.10±0.70	8.12±0.70	11.4±0.70	8.32 ± 0.90	7.98 ± 0.40
4a	6.39±0.50	6.89 ± 0.80	3.45±0.20	5.23±0.50	7.26 ± 0.60	6.28 ± 0.70
4 b	N.A	N.A	N.A	N.A	N.A	N.A
4 c	1.23±0.10	1.42 ± 0.10	1.07 ± 0.08	1.34 ± 0.30	1.09±0.10	1.13±0.10

Tabla 6: Valores de IC₅₀ (μ M) obtenidos para los compuestos **4a'**, **4a**, **4b** y **4c** en las 6 líneas celulares cancerosas utilizadas

Los resultados se expresan como valores de IC_{50} en unidades de μ M en un tiempo de 48 h. Los valores indican la media calculada a partir de experimentos realizados en triplicado. Los números en negrita representan las actividades más altas de los compuestos ensayados.

La eliminación del grupo metilciclohexilo del compuesto líder I, provocó que la actividad antiproliferativa del compuesto generado **4a**, disminuyera en todas las líneas celulares utilizadas en valores desde 1.2 (MFC-7) hasta 314 veces (SKLU-1) con respecto a I [Tabla **6**, renglón 3], lo que parece indicar que el mencionado grupo es necesario para que I tenga la actividad mostrada. Para averiguar si el –NH de la piperazina influía en la actividad mostrada por **4a** se concibió el compuesto morfolinilo **4b** que no exhibió actividad alguna en las líneas celulares ensayadas (Tabla **6**, renglón 4). Sin embargo, cuando se evaluó la actividad antiproliferativa de la N-formilpiperazina **4a**', los valores mostrados resultaron muy parecidos a los presentados por el compuesto **4a** aunque menores, lo que hace evidente que el grupo -NH de la piperazina juega un papel importante en la actividad mostrada tanto por el compuesto I como el **4a**, probablemente formando un ion piperidinio *in situ*.

El análisis de la influencia del grupo metilciclohexilpiperazinilo finalizó con la preparación de la amida **4c** y la evaluación de su actividad antiproliferativa, misma que mostró los

mejores valores de inhibición con respecto a los compuestos propuestos en esta serie, en todas las líneas celulares, incluso 8 veces mejor que el compuesto líder I en la línea celular MCF (mama) [1.09±0.1 vs 8.32±0.9].

6.2.2 Efecto en la actividad antiproliferativa cuando se introducen grupos electrodonadores y electroatractores en la posición *meta* del sustituyente 2-fenilo.

En esta sección se discute la actividad antiproliferativa mostrada (Tabla 7) por los compuestos II, III, 4d-4h (Figura 12), en cada una de las líneas celulares cancerosas utilizadas, tratando de encontrar alguna correlación entre las características electrónicas de los sustituyentes y la actividad exhibida.

En la línea celular cancerosa de próstata (PC-3) todos los compuestos nuevos [4d, 4e, 4f, 4g y 4h] fueron más activos que el compuesto sin sustituyente II, siendo 4d (3-OH) el que mostró mayor actividad con un IC₅₀ de 0.76±0.5 μ M. En el caso de la línea celular cancerosa del sistema nervioso central U-251 (SNC) el compuesto más activo fue 4j (-Cl) con un valor de IC₅₀ 0.37±0.04 μ M. En cuanto a la línea celular cancerosa de leucemia (K-562), también todos los compuestos nuevos nuevos [4d, 4e, 4f, 4g, 4h y 4j] fueron más activos que II, destacando el compuesto 4j (3-Cl, IC₅₀ 0.33±0.03 μ M). El compuesto III (3-NH₂) exhibió la mejor actividad en la línea celular cancerosa de colon (HTC-15) aunque el compuesto 4d (3-OH) mostró un valor muy cercano [0.01±0.003 vs 0.017±0.001]. De nuevo, el compuesto 4j (3-Cl) fue el más activo en la línea celular cancerosa MCF (mama) con un valor de IC₅₀ de 0.88±0.09 μ M. Finalmente, en la línea celular cancerosa de pulmón (SKLU-1) el compuesto más activo fue 4d (3-OH, IC₅₀ 0.054±0.01 μ M) seguido por el compuesto III (3-NH₂ 0.10±0.001 μ M).

42

Figura 12. Compuestos generados para evaluar el efecto en la actividad antiproliferativa de grupos electrodonadores y electroatractores.

Comp.	PC-3	U-251	K-562	HCT-15	MCF-7	SKLU-1
	(próstata)	(SNC)	(leucemia)	(colon)	(mama)	(pulmón)
II	18.15±0.60	4.86±0.600	76.78±7.30	0.14 ± 0.06	25.2±2.00	$0.59{\pm}0.005$
III-NH ₂	21.20±1.20	5.96 ± 0.50	2.5 ± 0.800	0.01±0.003	1.3±0.10	0.10 ± 0.001
4d-OH	0.76±0.50	6.12±0.40	5.47±0.70	0.017 ± 0.001	5.72±0.40	0.054±0.01
4e-OMe	3.26±0.10	3.31±0.40	2.65±0.10	0.69 ± 0.05	2.35±0.20	0.77 ± 0.08
4f-CN	3.86±0.10	3.17±0.30	1.98 ± 0.05	2.53±0.20	4.08 ± 0.20	2.93 ± 0.08
4g-NO ₂	8.26±1.00	12.66±0.50	8.28±1.10	0.10 ± 0.04	13.98±0.70	1.26±0.30
4h-CF ₃	2.30±0.20	2.5 ± 0.40	3.3±0.20	1.9±0.20	3.1±0.30	1.7 ± 0.10
4i-F	2.20±0.09	3.1±0.20	1.3±0.2	2.5±0.3	1.7 ± 0.07	3.3±0.1
4j-Cl	0.91±0.01	0.37±0.04	0.33±0.03	0.25 ± 0.02	0.88±0.09	0.76 ± 0.07
4k-Br	22.90±0.90	23.6±0.90	5.2±1.2	5.6±0.2	57.7±1.0	3.6±0.6

Tabla 7: Valores de IC_{50} (µM) obtenidos para los compuestos **4d-4k** en las 6 líneas celulares cancerosas utilizadas

Los resultados se expresan como valores de IC_{50} en unidades de μ M en un tiempo de 48 h. Los valores indican la media calculada a partir de experimentos realizados en triplicado. Los números en negrita representan las actividades más altas de los compuestos ensayados.

El análisis anterior no permite hacer una clara diferenciación en cuanto a las propiedades electrónicas de los sustituyentes unidos al grupo 2-fenilo (electroatractores y electrodonadores) y la actividad mostrada por los compuestos que los contienen. No obstante, la presencia de los grupos NH_2 y OH en la posición *meta* del grupo 2-fenilo hace que los compuestos que los contienen sean los más activos en relación a cuatro de las seis líneas cancerosas. Por lo cual, cabe la posibilidad de que formación de puentes de hidrógeno en el sitio receptor también coadyuve a que estos compuestos sean más activos.

6.2.3 Efecto en la actividad antiproliferativa cuando cambia la aromaticidad en los sustituyentes unidos a la posición C-2.

El posible efecto de la aromaticidad del sustituyente unido al C-2 de la pirroloisoquinolinas en la actividad antiproliferativa fue investigada analizando los valores obtenidos para los compuestos II (C-2-C₆H₅), IV (C-2-tiofenilo), 4m (C-2-pirrol), 4n (C-2-furano) y 40 (C-2piridina) (Figura 13).

En tres de las líneas celulares cancerosas evaluadas, sistema nervioso central U-251(CNS), colon (HTC-15) y pulmón (SKLU-1), todos los compuestos [**IV**, **4m**, **4n** y **4o**] resultaron con menor actividad que **II**, observando una ligera tendencia hacia la menor actividad en función de la menor aromaticidad del sustituyente unido a la posición C-2 de la pirroloisoquinolina. En las otras tres líneas celulares cancerosas evaluadas, leucemia (K-562) y mama (MCF-7) los compuestos **IV**, **4m**, **4n** y **4o** fueron más activos que **II**, destacando el compuesto **IV** (C-2-tiofenilo) en leucemia y mama, y 4m (C-2-furano) en próstata.

Comp.	PC-3	U-251	K-562	HCT-15	MCF-7	SKLU-1
	(próstata)	(SNC)	(leucemia)	(colon)	(mama)	(pulmón)
Π	18.15±0.60	4.86±0.600	76.78±7.30	0.14±0.06	25.2±2.00	0.59±0.005
IV	8.47±0.23	6.99±0.67	4.07±0.490	$0.59{\pm}0.05$	7.41±0.09	2.13±0.03
4m	10.50±0.24	8.99±0.68	6.5±0.67	0.9 ± 0.069	13.6±0.60	5.6±0.059
4n	2.97±0.10	8.67±0.10	8.54±0.5	1.72±0.2	14.7 ± 1.0	6.76±0.09
40	21.70±0.20	24.7±1.10	9.1±0.9	14.0±1.4	23.7±1.0	15.6±1.2

Tabla 8: Valores de IC_{50} (µM) obtenidos para los compuestos **4m-40** en las 6 líneas celulares cancerosas utilizadas

Los resultados se expresan como valores de IC_{50} en unidades de μ M en un tiempo de 48 h. Los valores indican la media calculada a partir de experimentos realizados en triplicado. Los números en negrita representan las actividades más altas de los compuestos ensayados.

Figura 13. Compuestos generados para evaluar el efecto de la aromaticidad en la actividad antiproliferativa.

En resumen, la evaluación de la actividad antiproliferativa de los compuestos 4a-4l, generados para tratar de conocer la influencia que tiene el sustituyente ciclohexilmetilpiperazinilo unido al carbonilo de la amida meta del 2-fenilo, los grupos electrodonadores, electroatractores y halógenos en la posición meta del 2-fenilo, y la aromaticidad del sustituyente unido a C-2, sobre la actividad mostrada por el compuesto I, indica que el grupo metilciclohexilo es necesario para que I tenga la actividad mostrada, si bien la eliminación de sustituyente ciclohexilmetilpiperazinilo genera la amida 4c con una mejor actividad que I. Con respecto a la presencia de los grupos electrodonadores y electroatractores en el fenilo unido a la posición 2 de las pirroloisoquinolinas II, 4d-4l, la actividad exhibida por los mismos no muestra una diferencia clara en función de sus propiedades electrónicas aunque la presencia de los grupos NH₂ y OH en la posición meta del grupo 2-fenilo, hace que los compuestos que los contienen sean los más activos en tres de las seis líneas cancerosas, lo que probablemente se deba a la formación de puentes de hidrógeno en el sitio receptor. En cuanto a la presencia de los halógenos flúor, cloro y bromo unidos a la posición 3 del 2-fenilo, compuestos 4i, 4j y 4k respectivamente, tampoco fue evidente una correlación entre las propiedades electrónicas de los sustituyentes halogenados y su actividad mostrada, si bien el compuesto clorado 4j fue el que mostró mayor actividad antiproliferativa en 3 líneas celulares cancerosas. Por último, la aromaticidad del sustituyente unido a la posición 2 de las pirroloisoquinolinas, compuestos II, IV, 4m, 4n y 4o, influye ligeramente en la actividad mostrada, dependiendo de la línea celular en la que fueron evaluados.

Los valores de la actividad citotóxica de los compuestos más activos **4d** y **4j** se compararon con los valores del Topotecan, utilizado para la terapia de cáncer de colon, mama y pulmón [44], del Irinotecan usado para cáncer de colon y pulmón [45], del Etoposido utilizado como tratamiento en leucemia, cáncer de pulmón y SNC [46], del Tamoxifeno utilizado contra cáncer de mama [47] y del Cisplatino comunmente utilizado para el tratamiento de cáncer de próstata y SNC [48].

Comp.	PC-3	U-251	K-562	HCT-15	MCF-7	SKLU-1
	(próstata)	(SNC)	(leucemia)	(colon)	(mama)	(pulmón)
4d	0.76±0.50			0.017±0.001		0.054±0.01
4 j		0.37±0.04	0.33±0.03		0.88±0.09	
Topotecan				0.5 ± 0.05	0.1 ± 0.02	2.0±0.1
Irinotecan				33.09±3.4		34.62±2.3
Etoposido		1.7 ± 0.3	11.3±2.5			4.1±0.6
Tamoxifeno					12.8±1.1	
Cisplatino	8.3 ± 0.7	3.3±0.6				

Tabla 9 Comparación de la actividad citotóxica de los compuestos que presentaron mayoractividad 4d y 4j vs médicamentos comerciales.

Los resultados se expresan como valores de IC_{50} en unidades de μ M en un tiempo de 48 h. Los valores indican la media calculada a partir de experimentos realizados en triplicado.

Como se muestra en la **Tabla 9**, el compuesto **4d** (3-OH) fue diez veces más activo que el Cisplatino en la línea celular de PC-3 de próstata (IC₅₀ = 0,76 ± 0,50 μ M Vs. IC₅₀ = 8,30 ± 0,70 μ M), casi dos mil veces más activo que Irinotecan en la línea celular HCT-15 de colon (IC₅₀ = 0,017 ± 0,001 μ M Vs. IC₅₀ = 33,09 ± 3,4 μ M). En la línea celular de pulmón SKLU-1, el compuesto **4d** (3-OH) es treinta y siete veces más activo que Topotecan (CI₅₀ = 0,054 ±

0,01 μ M Vs. IC₅₀ = 2,0 ± 0,10 μ M), seiscientas cuarenta veces más activo que Irinotecan (CI₅₀ = 0.054 ± 0.01 μ M Vs. IC₅₀ = 34.62 ± 2.30 μ M), y setenta y seis veces más activo que Etoposido (IC₅₀ = 0.054 ± 0.01 μ M Vs. IC₅₀ = 4.10 ± 0.60 μ M). El compuesto **4j** (3-Cl) mostró mejor actividad en la línea celular U-251 (CNS) (IC₅₀ = 0.37 ± 0.04 μ M) y leucemia K-562 (IC₅₀ = 0.33 ± 0.03 μ M) que el Etoposido (IC₅₀ = 1.7 ± 0.30 μ M y 11.3 ± 2.5 μ M, respectivamente). Asimismo, el compuesto **4j** (3-Cl) fue más activo que el Tamoxifeno (IC₅₀ = 12.8 ± 1.1 μ M) en la línea celular de cáncer de mama MCF-7 (CI₅₀ = 0.88 ± 0.09 μ M). Finalmente, los compuestos más activos en cada serie fueron evaluados en la línea celular de macrófagos murinos **J774** y la línea celular de linfocitos humanos **MT2**, ambas líneas no cancerosas utilizando Topotecan como referencia (Tabla **10**). La concentración que se probo fue de 25 μ M y en el caso del compuesto **4c** (-CONH₂) se probó a 5 μ M.

Comp	MT2	J774
4c (CONH ₂)	76.26	95.52
III (-NH ₂)	78.5	88.98
4d (-OH)	66	80.94
4h (-CF ₃)	78.3	61.5
4j (-Cl)	70	100
4n (furano)	80.12	79.07
Topotecan	82.25	91.9

Tabla 10. Evaluación en macrofagos de los compuestos mas activos vs topotecan.

Los compuestos **4c**, **III**, **4d**, **4h** y **4j** presentaron menor citotoxicidad en las líneas celulares no cancerosas, esto comparándolos con el Topoteca.

Con respecto al compuesto **4d** (-**OH**) quien presentó la mejor actividad en 3 líneas celulares cancerosas (PC-3, HCT-15 y SKLU-1) es 1.3 veces menos activo sobre linfocitos **MT2** y 1.1 veces menos agresivo en macrófagos murinos **J774**, con respecto a los resultados obtenidos por el Topotecan lo cual, sugiere una selectividad hacia células cancerosas.

Con respecto al compuesto **4j** que presento los mejores resultados en (U-251, K-562 y MCF-7) reportó una citotoxicidad de 1.1 menos activo sobre linfocitos humanos **MT2** y 1.0 más citotóxico en macrófagos murinos **J774** con respecto a los resultados obtenidos por el Topotecan sin embargo su selectividad es mayor en células cancerosas.

7. Sección Experimental

Detalles generales

Todos los puntos de fusión informados se determinaron en capilares abiertos utilizando un aparato Mel-Temp. Los espectros de RMN de ¹H fueron obtenidos en los espectrómetros Avance III HD 700 MHz Brucker, Avance III HD 500 MHz Brucker, Avance 400 MHz Brucker, 300 MHz Jeol Eclipse, Fourier 300 MHz Brucker en cloroformo deuterado (CDCl₃), utilizando como referencia interna TMS ($\delta = 0$ ppm), los espectros de RMN de ¹³C fueron obtenidos a 50, 75, y 125 MHz en los mismos equipos. Los desplazamientos químicos se reportan en la escala de partes por millon (ppm) utilizando el parámetro de δ . La terminología usada es la siguiente: s, singulete; d, doblete; t, triplete; c, cuarteto; m, multiplete; sa, señal ancha. Las constantes de acoplamiento (J) son reportadas en Hertz (Hz).

Los espectros de IR fueron obtenidos en un espectrómetro FT-IR Tensor 27 Bruker Magna-IR y FT-IR Bruker ALPHA, las técnicas para obtenerlos fueron en pastilla de KBr, ATR o' Película

Los espectros de masas se recolectaron en los espectrómetros JEOL JMS AX-505 HA, JEOL SX 102 A y JEOL JMS-T100LC, utilizando las técnicas de bombardeo átomico (FAB+), impacto electrónico (EI) y análisis directo de tiempo real (DART) con detecciones de 70 eV. La cromatografía en columna se realizó en gel de sílice 60 (230– 400 mallas ASTM) de Macherey-Nagel GmbH & Co. El avance de la reacción se siguió por ccf utilizando cromatofolios Alugram (silica gel 60 con indicador fluorescente UV_{254}), y se visualizaron usando una lámpara de UV de onda corta/larga y una disolición de permanganato de potasio, vanillina, o *p*-anisaldehido.

52

Los disolventes como el DMSO y acetonitrilo fueron destilados de hidruro de calcio mientras que el tolueno y éter etílico fueron destilados de sodio metálico y benzofenona, y DMF fué destilada de sulfato de magnesio.

7.2 Procedimiento general para la síntesis de los pirroles 2a'-2n

A una mezcla del ester α , β -insaturado (2.6 mmol) correspondiente y del 1-(1isocianoetillsulfonil)-4-metilbenceno (Me-TosMIC) (0.6 g, 2.9 mmol) disuelta en Et₂O: DMSO (2:1, 15 mL) se le añadió, gota a gota, una suspension de NaH (0.23 g, 5.7 mmol, 60% en aceite mineral) en éter anhidro (5 mL). La mezcla se agitó a temperatura ambiente por 30 min. Después al finalizar el tiempo de reacción se agregó lentamente, H₂O (15 mL) y posteriormente AcOEt (3x30 mL). La fase orgánica se secó con Na₂SO₄ anhidro y se filtró, posteriormente se evaporó a presión reducida. El crudo de reacción se purificó por cromatografía en columna de gel de sílice obteniendo el correspondiente pirrol.

4-[3-(4-formilpiperazin-1-carbonil)fenil]-5-metil-1H-pirrol-3-carboxilato de etilo (2a').

Rendimiento del 88% (0.37g); sólido amarillo p.f. 126– 128°C; TLC (DCM-acetona, 80:20, v/v). **IR** (KBr) 3231, 3126, 1685, 1666, 1631 cm⁻¹; **RMN-¹H** (300 MHz, CDCl₃), δ : 1.21 (t, 3H, J = 7.1 Hz), 2.15 (s, 3H), 3.34–

3.71 (m, 8H), 4.12 (c, 2H, *J* = 7.1 Hz), 7.27–7.46 (m, 5H), 8.09 (s, 1H), 8.45 (brs, 1H, – NH); **RMN-¹³C** (75 MHz, CDCl₃) δ 11.7, 14.6, 46.1, 47.4, 49.5, 50.0, 59.6, 121.6, 123.2, 125.4, 126.2, 127.1, 128.4, 129.7, 132.1, 134.3, 135.3, 161.2, 164.7, 171.5; **EM** (EI) *m/z* (rel. int. %): 369 (M+, 8), 203 (100), 43 (63); **EM-AR** (FAB+): Calcd. para [C₂₀H₂₃N₃O₄ + H]⁺: 370.1767. Observado: 370.1767.

5-metil-4-(3-(morfolin-4-carbonil)fenil)-1H-pirrol-3-carboxilato de etilo (2b).

Rendimiento 95% (0.33g); sólido naranja p.f. 60-62°C; TLC (hexano–AcOEt–TEA, 45:50:05, v/v/v). **IR** (KBr) 3148, 2960, 2856, 1711, 1626 cm⁻¹; **RMN-¹H** (300 MHz, CDCl₃) δ: 1.14 (t, 3H, *J* = 7.1 Hz), 2.09 (s, 3H), 3.47–3.81 (m, 8H),

4.06 (q, 2H, *J* = 7.2 Hz), 7.26 (t, 2H, *J* = 1.7 Hz), 7.28–7.30 (m, 2H), 7.32-7.38 (m, 1H), 8.47 (brs, 1H, –NH); **RMN-¹³C** (75 MHz, CDCl₃) δ 11.7, 14.6, 25.1, 34.1, 59.5, 67.1, 67.3, 114.6, 121.6, 123.2, 125.4, 127.1, 128.2, 129.6, 132.0, 134.6, 135.3, 164.8, 171.2; **EM** (EI) *m/z* (rel. int. %): 342 (M+, 50), 313 (18), 256 (100); **EM-AR** (ESI+): Calcd. para [C₁₉H₂₂N₂O₄+H]⁺ 343.1657. Observado: 343.1662.

4-(3-carbamoilfenil)-5-metil-1H-pirrol-3-carboxilato de etilo (2c).

Rendimiento 90% (0.5g); sólido blanco p.f. 118–120°C; TLC (DCM-acetona, 50:50, v/v). **IR** (KBr) 3422, 3190, 1671, 1622 cm⁻¹; **RMN-¹H** (300 MHz, DMSO) δ 1.03 (t, 3H, *J* = 7.2 Hz), 2.06 (s, 3H), 3.96 (q, 2H, *J* = 7.2 Hz), 7.33–7.34 (m, 1H), 7.68-

7.71 (m, 2H), 7.89 (s, 1H), 7.95 (brs, 1H), 11.33 (brs, 2H, –NH); **RMN-¹³C** (75 MHz, DMSO) δ 11.6, 14.6, 59.2, 113.5, 121.0, 123.9, 125.5, 127.4, 127.9, 130.0, 133.6, 133.8, 136.0, 164.7, 169.1; **EM** (EI) *m/z* (rel. int. %): 272 (M+, 98), 210 (47), 78 (100); **EM-AR** (FAB+): Calcd. para [C₁₅H₁₆N₂O₃] 272.1161. Observado: 272.1155.

4-(3-(benziloxi)fenil))-5-metil-1H-pirrol-3-carboxilato de etilo (2d').

Rendimiento 95% (1.01g); sólido naranja p.f. 92–94°C; TLC (hexano–AcOEt, 70:30, v/v). **IR** (KBr) 3290, 1687 cm⁻¹; **RMN-¹H** (300 MHz, CDCl₃) δ 1.46 (t, 3H, *J* = 7.1 Hz), 2.68 (s, 3H), 4.57 (q, 2H, *J* = 7.1 Hz), 5.63 (s, 2H),

7.26 (s, 1H), 7.32-7.57 (m, 3H), 7.77-8.02 (m, 6H), 8.53 (brs, 1H, –NH); **RMN-¹³C** (75 MHz, CDCl₃) δ 10.4, 13.8, 60.1, 70.0, 110.3, 112.9, 116.5, 121.5, 123.1, 125.3, 125.7, 127.6, 128.0, 128.7, 128.8, 137.4, 138.1, 147.9, 148.1, 158.4, 167.2; **EM** (EI) *m/z* (rel. int. %): 335 (M⁺, 55), 289 (47), 91 (100); **EM-AR** (ESI+): Calcd. para [C₂₁H₂₁NO₃+H]⁺: 336.1599. Observado: 336.1595.

4-(3-metoxifenil)-5-metil-1H-pirrol-3-carboxilato de etilo (2e).

Rendimiento 70% (0.4g); sólido rosa p.f. 110–112°C; TLC (hexano–AcOEt, 70:30, v/v). **IR** (KBr) 3166, 1692 cm⁻¹; **RMN-¹H** (300 MHz, CDCl₃) δ 1.20 (t, 3H, J = 7.1 Hz), 2.17 (s, 3H), 3.83 (s, 3H), 4.18 (q, 2H, J = 6.8 Hz), 6.84 (dd, 1H, J

= 8.1 Hz, J = 2.7 Hz), 6.88–6.96 (m, 2H), 7.30 (d, 1H, J = 7.8 Hz), 7.34 (d, 1H, J = 3.1 Hz), 8.60 (brs, 1H, –NH); **RMN-¹³C** (75 MHz, CDCl₃) δ 11.7, 14.4, 55.3, 59.6, 111.8, 114.7, 116.5, 122.1, 123.1, 123.3, 126.8, 128.5, 136.8, 159.0, 165.2; **EM** (EI) *m/z* (rel. int. %): 259 (M⁺), 214 (63), 213(22); **EM-AR** (ESI+): Calcd. para [C₁₅H₁₇NO₃+H]⁺: 260.1286. Observado: 260.1282.

Rendimiento 80% (1g); sólido blanco p.f. 116–118°C; TLC (hexano–AcOEt, 70:30, v/v). **IR** (KBr) 3262, 2225, 1711 cm⁻¹; **RMN-¹H** (300 MHz, CDCl₃) δ 1.18 (t, 3H, *J* = 7.1 Hz), 2.15 (s, 3H), 4.15 (q, 2H, *J* = 7.0 Hz), 6.81 (dd, 1H, *J* = 8.1 Hz, J= 2.7

Hz), 6.87-6.92 (m, 2H), 7.31 (dd, 2H, J = 7.3 Hz, J = 4.3), 8.57 (brs, 1H, -NH); **RMN-**¹³**C** (75 MHz, CDCl₃) δ 11.6, 14.3, 59.5, 111.6, 111.7, 114.7, 116.4, 122.0, 123.0, 123.2, 126.7, 128.4, 136.7, 158.9, 165.1; **EM** (EI) m/z (rel. int. %): 254 (M⁺), 209 (100), 139 (58); **EM-AR** (FAB+): Calcd. para [C₁₅H₁₄N₂O₂]⁺: 254.1055; Observado: 254.1062.

5-metil-4-(3-nitrofenil)-1H-pirrol-3-carboxilato de etilo (2g).

Rendimiento 80% (0.7g); sólido amarillo p.f. 168–170°C; TLC (hexano–AcOEt, 70:30 v/v). **IR** (KBr) 3281, 1677, 1511, 1328 cm⁻¹; **RMN-¹H** (300 MHz, (CD₃)₂CO) δ 1.01 (t, 3H, *J* = 7.1 Hz), 2.09 (s, 3H), 3.95 (g, 2H, *J* = 7.1 Hz), 7.33 (d, 1H, *J* = 3

Hz), 7.49 (t, 1H, J = 7.9 Hz), 7.61 (dt, 1H, J = 7.6 Hz, J = 1.4 Hz), 7.99 (ddd, 1H, J = 8.1Hz, J = 2.5 Hz, J = 1.2 Hz), 8.04 (t, 1H, J = 2 Hz), 10.50 (brs, 1H, -NH); **RMN-¹³C** (75 MHz, CDCl₃) δ 11.2, 14.4, 59.4, 114.6, 120.2, 121.3, 124.5, 125.9, 128.4, 129.2, 137.6, 138.5, 148.5, 164.6; **EM** (EI) m/z (rel. int. %): 274 (100), 229 (75), 154(32). **EM-AR** (FAB+): Calcd. para [C₁₄H₁₄N₂O₄]⁺: 274.0954. Observado: 274.0951. 5-metil-4-[3-(trifluorometil)fenil]-1H-pirrol-3-carboxilato de etilo (2h).

Rendimiento 85% (0.52g); sólido blanco p.f. 110–112°C; TLC (hexano–AcOEt, 70:30 v/v). **IR** (KBr) 3292, 1680 cm⁻¹; **RMN-**¹**H** (400 MHz, CDCl₃) δ 1.14 (t, 3H, *J* = 7.1 Hz), 2.18 (s, 3H), 4.13 (q, 2H, *J* = 7.1 Hz), 7.40 (d, 1H, *J* = 3.1 Hz), 7.44-7.54 (m,

3H), 7.57 (s, 1H), 8.38 (brs, 1H, –N*H*); **RMN-¹³C** (101 MHz, CDCl₃) δ 11.4, 14.0, 29.7, 59.5, 114.9, 120.8, 122.9, 123.2, 126.9, 127.3(x2), 127.8, 133.9, 136.0, 164.8; **EM** (EI) *m/z* (rel. int. %): 297 (M⁺, 93), 252 (100), 224 (18); **EM-AR** (ESI+): Calcd. para [C₁₅H₁₄F₃NO₂+H]⁺: 298.1054. Observado: 298.1058.

4-(3-fluorofenil)-5-metil-1H-pirrol-3-carboxilato de etilo (2i).

Rendimiento 88% (0.56g); sólido naranja p.f. 88–90°C; TLC (hexano–AcOEt, 70:30 v/v). **IR** (KBr) 3462, 1706 cm⁻¹; **RMN-**¹**H** (400 MHz, CDCl₃) δ 1.17 (t, 3H, J = 7.1 Hz), 2.17 (s, 3H), 4.15 (q, 2H, J = 7.1 Hz,), 6.92–6.99 (m, 1H), 7.02 (ddd, 1H, J=

10.3 Hz, J= 2.7 Hz, J= 1.5 Hz), 7.08 (dt, 1H, J= 7.6 Hz, J= 1.2 Hz), 7.26-7.34 (m, 1H), 7.36 (d, 1H, J= 3.0 Hz), 8.37 (brs, 1H, -NH); **RMN-¹³C** (101 MHz, CDCl₃) δ 11.1, 14.2, 59.7, 112.8, 113.1, 114.6, 117.2, 117.4, 122.9, 126.1, 126.8, 137.4, 161.0, 164.5; **EM** (EI) m/z (rel. int. %): 248 (M⁺+1, 100), 202 (22); **EM-AR** (ESI+): Calcd. para $[C_{14}H_{14}FNO_{2}+H]^{+}$: 248.1086. Observado: 248.1077.

Rendimiento 90% (0.56g); sólido morado p.f. 106–108°C; TLC (hexano–AcOEt, 70:30 v/v). **IR** (KBr) 3307, 1686 cm-¹; **RMN-**¹**H** (300 MHz, CDCl₃) δ 1.17 (t, 3H, *J* = 7.2 Hz), 2.13 (s, 3H), 4.14 (q, 2H, *J* = 7.2 Hz), 7.17-7.35 (m, 5H), 8.72 (brs, 1H, –

N*H*); **RMN-¹³C** (75 MHz, CDCl₃) δ 11.6, 14.3, 59.8, 114.6, 120.9, 123.5, 126.4, 127.2, 128.8, 128.9, 130.7, 133.3, 137.3, 165.3; **EM** (EI) *m/z* (rel. int. %): 263 (M⁺, 83), 218 (100), 69 (48); HR-MS (ESI+): Calcd. para [C₁₄H₁₄ClNO₂+ H]⁺: 264.0791. Observado: 264.0789.

4-(3-aminofenil)-5-metil-1H-pirrol-3-carboxilato de etilo (2k').

Rendimiento 97% (0.99g); sólido blanco p.f. 47–48°C; TLC (AcOEt –hexano–TEA, 50:45:5 v/v/v). Las propiedades físicas y los datos espectroscopicos coinciden con los descritos en la literatura [14].

1-bencil 4'-etil 2'-metil-1H,1'H-[2,3'-bipirrol]-1,4'-dicarboxilato (2m').

Rendimiento 80% (0.56g); sólido café p.f. 104–106°C; TLC (hexano–AcOEt, 70:30 v/v). **IR** (KBr), 1676, 1601 cm⁻¹; **RMN-¹H** (300 MHz, CDCl₃) δ 1.19 (t, 3H, *J* = 7.1 Hz), 1.86 (s, 3H), 4.14 (q, 2H, *J* = 7.0 Hz), 4.88 (d, 2H, *J* = 7.4 Hz),

6.02 (dd, 1H, *J*= 3.5 Hz, *J* = 1.8 Hz) 6.20 (t, 1H, *J* = 3.1 Hz), 6.74 (dd, 1H, *J* = 2.8 Hz, *J* = 1.7 Hz), 6.82–6.93 (m, 2H), 7.12-7.20 (m, 3H), 7.30 (d, 1H, *J* = 3.0 Hz), 8.49 (brs, 1H, –N*H*); **RMN-¹³C** (75 MHz, CDCl₃) δ 11.1, 14.3, 50.9, 59.4, 107.3, 109.3, 112.6, 115.9,

121.1, 122.8, 126.8, 126.9(x2), 128.2(x2), 129.8, 139.3, 153.7,165.1; **EM** (EI) *m/z* (rel. int. %): 352 (M⁺, 5), 308 (100), 171 (55); **EM-AR** (ESI+): Calcd. para [C₂₀H₂₀N₂O₄-CO₂]⁺: 309.1603. Observado: 309.1597.

4-(furan-2-il)-5-metil-1H-pirrol-3-carboxilato de etilo (2n).

Rendimiento 92% (1.2g); sólido amarillo p.f. 82–84°C; TLC (hexano–AcOEt, 80:20 v/v). **IR** (KBr) 3281, 1685 cm⁻¹; **RMN-¹H** (300 MHz, CDCl₃) δ 1.27 (t, 3H, J = 7.1 Hz), 2.34 (s, 3H), 4.22 (q, 2H, J = 7.1 Hz,), 6.45 (dd, 1H, J = 3.3 Hz, J = 1.9 Hz), 6.60 (d, 1H,

J = 3.1 Hz), 7.33 (d, 1H, J = 3.0 Hz), 7.45 (d, 1H, J = 1.9 Hz), 8.30 (brs, 1H, -NH); **RMN-**¹³**C** (75 MHz, CDCl₃) δ 12.2, 14.3, 59.7, 108.3, 110.7, 111.6, 114.2, 123.5, 128.9, 140.9, 149.0, 165.0; **EM** (EI) *m/z* (rel. int. %): 219 (M⁺, 100), 174 (74), 171 (55), 162 (25); **EM-AR** (FAB+): Calcd. para [C₁₂H₁₃NO₃]⁺: 219.0895. Observado: 219.0900.

5-metil-4-(piridin-2-il)-1H-pirrol-3-carboxilato de etilo (20).

Rendimiento 85% (2.2g); solido blanco p.f. 94-96 °C; TLC (hexano– AcOEt, 70:30 v/v). **IR** (KBr) 3167, 1692 cm⁻¹; **RMN-¹H** (300 MHz, CDCl₃) δ 1.17 (t, 3H, *J* = 7.1 Hz), 1.96 (s, 3H), 4.14 (q, 2H, *J* = 7.1 Hz), 7.15–7.22 (m, 2H), 7.46 (dt, 1H, *J* = 8.0 Hz, J=1 Hz), 7.68 (ddd,

1H, *J* = 8.0 Hz, *J* = 7.5 Hz, J= 1.8 Hz), 8.58 (ddd, 1H, *J* = 5.1 Hz, J= 1.8 Hz, J= 0.9 Hz), 11.51 (brs, 1H, –N*H*); **RMN-¹³C** (75 MHz, CDCl₃) δ 11.1, 14.3, 59.4, 113.8, 120.5, 121.2, 123.7, 126.7, 129.4, 135.8, 147.8, 155.3, 165.2; **EM** (EI) *m/z* (rel. int. %): 230 (M⁺, 96), 184 (100), 156 (78); **EM-AR** (FAB+): Calcd. para [C₁₃H₁₄N₂O₂+H]⁺: 231.1134. Observado: 231.1131.

7.3 Procedimiento general para la síntesis de N-alquil pirroles 3a'-3n

A una disolución del correspondiente pirrol (2.3 mmol) en DMSO anhidro, se le añadió NaH (0.2 g, 5.7 mmol, 60% en aceite mineral) y después de 2 horas de agitarla, a temperatura ambiente, se le adicionó lentamente el bencensulfonato de 2-bromo-(4,5dimetoxifenil)etil-4-metilo (1.9 g, 4.5 mmol). La mezcla de reacción continuó en agitación magnética por 6 h más; a continuación se le adicionó agua para eliminar el exceso de base (NaH) y se extrajo con AcOEt (20 mL) y salmuera (3 x 10 mL). La fase orgánica se secó con Na₂SO₄ anhidro y el disolvente se eliminó por evaporación al vacío. El crudo de reacción fue purificado por cromatografía en columna con silica gel 230/400 para obtener los *N*-alquilpirroles correspondientes.

1-[2-(2-bromo-4,5-dimetoxifenil)etil]-4-[3-(4-formilpiperazina-1-carbonil)fenil]-5metil-1H-pirrol-3-carboxilato de etilo (3a').

Rendimiento 60% (0.29g); sólido amarillo p.f. 86– 88°C; TLC (DCM–Acetona, 50:50, v/v). **IR** (KBr) 3124, 1701, 1669, 1631 cm⁻¹; **RMN-¹H** (300 MHz, CDCl₃) δ 1.21 (t, 3H, J = 7.1 Hz), 1.95 (s, 3H), 3.10(t, 2H, J = 7.0 Hz), 3.42 (dddd, 4H, J = 17.0, J = 13.5 Hz, J = 6.9 Hz, J = 3.9 Hz), 3.60 (tdq, 4H, J = 13.2 Hz, J =

7.0 Hz, J = 3.4 Hz), 3.72 (s, 3H), 3.86(s, 3H), 4.07 (td, 2H, J = 7.1 Hz, J = 3.3 Hz) 4.13 (q, 2H, J = 7.1 Hz), 6.39 (s, 1H), 7.03 (d, 1H, J = 4.2 Hz), 7.32-7.42 (m, 4H), 7.52-7.59(m, 1H), 8.12(s,1H); 10.84 (bs,1H); **RMN-¹³C** (75 MHz, CDCl₃) δ 10.2, 14.6, 38.1, 40.5, 47.3, 56.2, 56.5, 59.5, 113.7, 114.4, 115.8, 125.4, 126.0, 126.2, 126.4, 127.8, 128.4, 128.6,

128.9, 129.0, 129.4, 129.7 (x2), 130.0, 132.3, 148.7, 149.0, 161.3, 164.6, 171.4; **EM** (EI) *m/z* (rel. int. %): 531 (M⁺- HBr, 22), 486 (100), 372 (40); **EM-AR** (FAB+): Calcd. para [C₃₀H₃₅BrN₃O₆+H]⁺: 612.1709. Observado: 612.1703.

1-[2-(2-bromo-4,5-dimetoxifenil)etil]-5-metil-4-[3-(morfolin-4-carbonil)fenil]-1Hpirrol-3-carboxilato de etilo (3b).

Rendimiento 65% (0.33g); sólido amarillo p.f. 156-158°C; TLC (hexano–AcOEt–TEA, 45:45:10, v/v/v). **IR** (KBr) 1702, 1626 cm⁻¹; **RMN-¹H** (300 MHz, CDCl₃) δ 1.20 (t, 3H, *J* = 7.1Hz), 1.95 (s, 3H), 3.10 (t, 2H, *J* = 7.1 Hz), 3.7 (m, 11H), 3.87 (s, 3H), 4.09 (dq, 4H, *J* = 17.5 Hz, *J* = 8.3 Hz, *J* = 7.7 Hz), 6.37 (s, 1H), 7.03 (s, 1H), 7.27 (dt, 2H, *J*

= 3.9 Hz, J = 1.8 Hz), 7.29 (s, 1H), 7.33-7.44 (m, 2H); **RMN-¹³C** (75 MHz, CDCl₃) δ 10.0, 14.4, 37.9(x2), 47.0(x2), 56.0, 56.2, 56.4, 59.2, 67.1, 113.0, 113.4, 114.1, 115.6, 122.3, 125.2, 126.1, 128.0, 128.1, 128.7, 129.5, 131.8, 134.4, 135.4, 148.5, 148.8, 164.3, 170.8; **EM** (EI) m/z (rel. int. %): 505 (M⁺- Br, 100), 432 (45), 231 (19); **EM-AR** (EI+): Calcd. para [C₂₉H₃₂BrN₂O₆-H]⁺: 583.1444. Observado: 583.1438.
*carboxilato de etilo (***3c***).*

Rendimiento 63% (0.33g); sólido amarillo p.f. 172-174°C; TLC (DCM–Acetona, 70:30, v/v). **IR** (KBr) 3406, 1692 cm⁻¹; **RMN-¹H** (700 MHz, (CD₃)₂CO) δ 1.11 (t, 3H, *J* = 6.9 Hz), 2.02 (s, 3H), 3.17 (t, 2H, *J*= 7.2 Hz), 3.72 (s, 3H), 3.84 (s, 3H), 4.04 (q, 2H, *J*= 6.9 Hz), 4.22 (2H, J= 7.2), 6. 77 (s, IH), 7.14 (s, 1H), 7.39 (s, 2H), 7.41 (d, 2H, *J* = 7.2 Hz) 7.46 (d,

1H, J = 7.4 Hz), 7.83 (bs, 2H); **RMN-¹³C** (176 MHz, (CD₃)₂CO) δ 9.3, 13.7, 37.2, 46.8, 55.3, 55.6, 58.5, 113.0, 113.7, 114.4(x2), 115.7(x2), 122.0, 126.5, 127.3 (x 2), 128.0, 129.1, 134.2, 136.3, 149.0, 149.2, 163.8, 171.3; **EM** (EI) m/z (rel. int. %): 514 (M⁺- Br, 100), 362 (50), 347 (15); **EM-AR** (EI+): Calcd. para $[C_{25}H_{27}BrN_2O_5+H]^+$: 515.1181. Observado: 515.1184.

4-[3-(benziloxi)feni])-1-(2-bromo-4,5-dimetoxifenil)etil-5-metil-1H-pirrol-3-

carboxilato de etilo (3d').

Rendimiento 60% (0.41g); aceite amarillo; TLC (hexano–AcOEt–TEA, 60:30:10, v/v/v). **IR** (KBr) 1706 cm⁻¹; **RMN-¹H** (300 MHz, CDCl₃) δ 1.13 (t, 3H, *J* = 7.1 Hz), 1.87 (s, 3H), 3.06 (t, 2H, *J* = 6.9 Hz), 3.69 (s, 3H), 3.81 (s, 3H), 3.99-4.14 (m, 4H), 5.03 (s, 2H), 6.31 (s, 1H), 6.81–6.90 (m, 3H), 7.0 (s, 1H), 7.19–7.28 (m, 2H), 7.29-

7.38 (m, 2H), 7.41–7.44 (m, 2H), 7.65 (d,1H, *J* = 8.5 Hz); **RMN-¹³C** (75 MHz, CDCl₃) δ 10.1, 14.4, 38.0, 47.0, 56.1, 56.3, 59.3, 70.0, 112.9, 113.5, 114.0, 114.2, 115.6, 117.1, 123.0, 123.6, 125.9, 127.6, 127.8, 127.9, 128.1, 128.5, 128.6, 128.9, 129.8, 137.1, 137.5, 148.6, 148.8, 158.2, 164.7; **EM** (EI) *m/z* (rel. int. %): 498 (M⁺- Br, 100), 425 (29), 91 (48); **EM-AR** (FAB+): Calcd. para [C₃₁H₃₂BrNO₅+H]⁺: 578.1542. Observado: 578.1547.

1-(2-bromo-4,5-dimetoxifenil)etil]-4-(3-metoxifenil)-5-metil-1H-pirrol-3-carboxilato de etilo (3e).

Rendimiento 61% (0.9g); aceite amarillo; TLC (AcOEthexano–TEA, 50:40:10, v/v/v). **IR** (ATR) 1705 cm⁻¹; **RMN-**¹**H** (300 MHz, CDCl₃) δ 1.15 (t, 3H, *J* = 7.1 Hz), 1.93 (s, 3H), 3.10 (t, 2H, *J* = 7.0 Hz), 3.72(s, 3H), 3.80 (s, 3H), 3.86 (s, 3H), 4.03–4.16 (m, 4H), 6.34 (s, 1H), 6.77 (t, 1H, *J* = 1.9 Hz), 6.80 (dd, 1H, *J* = 2.9 Hz, *J* = 1.1 Hz), 6.83 (d, 1H, *J* = 2.8 Hz), 7.03

(s, 1H), 7.23 (d, 1H, *J* = 7.9 Hz), 7.29 (s, 1H); **RMN-¹³C** (75 MHz, CDCl₃) δ 10.2, 14.4, 38.1, 47.2, 55.3, 56.2, 56.4, 59.4, 112.0, 113.6, 113.7, 114.3, 115.7, 116.5, 123.1, 123.4, 126.0, 128.1, 128.5, 129.0, 137.1, 148.7, 149.0, 159.0, 164.8; **EM** (EI) *m/z* (rel. int. %): 422 (M⁺- Br, 100), 376 (22), 349 (43); **EM-AR** (FAB+): Calcd. para [C₂₅H₂₈BrNO₅+H]⁺: 502.1229. Observado: 502.1222.

4-(3-cianofenil)-1-(3,4-dimetoxifenil)etil-5-metil-1H-pirrol-3-carboxilato de etilo (3f).

Rendimiento 68% (0.74g); sólido naranja p.f. 102–104°C; TLC (hexano–AcOEt–TEA, 60:30:10, v/v/v). **IR** (ATR) 2225,1724 cm⁻¹; **RMN-¹H** (300 MHz, CDCl₃) δ 1.14 (t, 3H, *J* = 7.1 Hz), 1.96 (s, 3H), 3.11 (t, 2H, *J* = 7.1 Hz), 3.74 (s, 3H), 3.86 (s, 3H), 4.07-4.14 (m, 4H), 6.40 (s, 1H), 7.03 (s, 1H), 7.33 (s, 1H), 7.49 (dd, 1H, *J* = 9.1 Hz, *J* = 7.4 Hz), 7.56 (dt, 1H, *J* = 7.6 Hz, *J* =

1.5 Hz), 8.12 (dt, 2H, *J* = 6.9 Hz, *J* = 1.9 Hz); **RMN-¹³C** (75 MHz, CDCl₃) δ 10.1, 14.4, 38.1, 47.3, 56.2, 56.4, 59.7, 111.8, 113.5, 113.6, 114.4, 115.8, 119.4, 121.1, 126.6, 128.4,

128.5, 128.7, 130.0, 134.3, 135.4, 137.2, 148.8, 149.0, 164.5; **EM** (EI) *m/z* (rel. int. %): 417 (M⁺- Br, 55), 167 (38), 149 (100); **EM-AR** (ESI+): Calcd. para [C₂₅H₂₅BrN₂O₄+H]⁺: 497.1075. Observado: 497.1067.

1-(2-bromo-4,5-dimetoxifenil)etil-5-metil-4-(3-nitrofenil)-1H-pirrol-3-carboxilato de etilo (3g).

Rendimiento 65% (1.3g); sólido de amarillo p.f. 110–112°C; TLC (hexano–AcOEt–TEA, 60:30:10, v/v/v). **IR** (KBr) 1706, 1380 cm⁻¹; **RMN-¹H** (300 MHz, CDCl₃) δ 1.14 (t, 3H, *J* = 7.1 Hz), 1.96 (s, 3H), 3.11 (t, 2H, *J* = 7.1 Hz), 3.74 (s, 3H), 3.86 (s, 3H), 4.05-4.16 (m, 4H), 6.40 (s, 1H), 7.03 (s, 1H), 7.32 (s, 1H), 7.40-7.61 (m, 2H), 8.06–8.19 (m, 2H); **RMN-¹³C** (75 MHz,

CDCl₃) δ 10.5, 13.9, 29.3, 41.5, 56.1, 56.2, 60.1, 100.1, 109.8, 110.7, 111.0, 121.1, 121.7, 125.3, 125.8, 126.4, 128.5, 132.3, 136.7, 138.9, 147.9, 148.0, 148.5, 166.3; **EM** (EI) *m/z* (rel. int. %): 437 (M⁺- Br, 100), 364 (54), 349 (13); **EM-AR** (ESI+): Calcd. para [C₂₄H₂₅BrN₂O₆+H]⁺: 517.0974. Observado: 517.0950.

1-(2-bromo-4,5-dimetoxifenil)etil-5-metil-4-[3-(trifluorometil)fenil]-1H-pirrol-3carboxilato de etilo (3h).

Rendimiento 76% (1.4g); sólido naranja p.f. 72–74°C; TLC (hexano–AcOEt–TEA, 60:30:10, v/v/v). **IR** (película) 1703cm⁻¹; **RMN-¹H** (500 MHz, CDCl₃) δ 1.14 (t, 3H, J = 7.1 Hz), 1.96 (s, 3H), 3.04 (t, 2H, J= 6.8 Hz), 3.84 (s, 3H), 3.86 (s, 3H), 4.04-4.18 (m, 4H), 6.69 (s, 1H), 6.94 (s, 1H), 7.28-7.31 (m, 1H), 7.35 (s, 1H), 7.45-7.50 (m, 1H), 7.67-7.74 (m, 2H);

RMN-¹³C (126 MHz, CDCl₃) δ 9.9, 14.1, 21.6, 35.4, 37.9, 47.1, 56.0, 59.4, 69.1, 113.4,

113.9, 115.6, 121.6, 126.3, 127.5, 127.8(x2), 128.6, 129.7, 133.0, 133.9, 136.4, 144.6,
148.8, 164.5; EM (EI) *m/z* (rel. int. %): 460 (M⁺- Br, 100), 387 (38), 242 (57); EM-AR
(FAB+): Calcd. para [C₂₅H₂₅BrF₃NO₄+H]⁺: 540.1015. Observado: 540.1017.

1-(2-bromo-4,5-dimetoxifenil)etil-4-(3-fluorofenil)-5-metil-1H-pirrol-3-carboxilato de etilo (3i).

Rendimiento 80% (0.65g); sólido blanco p.f. 69–71°C; TLC (hexano–AcOEt–TEA, 60:30:10, v/v/v). **IR** (KBr) 1707 cm⁻¹; **RMN-¹H** (400 MHz, CDCl₃) δ 1.15 (t, 3H, *J*= 7.0 Hz), 1.93 (s, 3H), 3.09 (t, 2H, *J*= 6.8 Hz), 3.72 (s, 3H), 3.85 (s, 3H), 4.03-4.14 (m, 4H), 6.36 (s, 1H), 6.92-7.00 (m, 3H), 7.02 (s, 1H), 7.28 (d, 2H, *J*= 10.5 Hz); **RMN-¹³C** (101 MHz, CDCl₃) δ 9.9, 14.2, 37.9,

47.0, 56.0, 56.2, 59.4, 112.9, 113.1, 114.1, 115.6, 117.4, 117.6, 126.1, 126.3, 128.1, 128.7, 128.8, 137.8, 148.5, 148.8, 161.0, 163.4, 164.5; **EM** (EI) *m/z* (rel. int. %): 410 (M⁺- Br, 100), 337 (58), 242 (38); **EM-AR** (ESI+): Calcd. para [C₂₄H₂₅BrFNO₄+H]⁺: 490.1029. Observado: 490.1026.

1-(2-bromo-4,5-dimetoxifenil)etil-4-(3-clorofenil)-5-metil-1H-pirrol-3-carboxilato de etilo (3j).

Rendimiento 78% (0.6g); sólido naranja p.f. 58-60°C; TLC (hexano–AcOEt–TEA, 60:30:10, v/v/v). **IR** (KBr) 1704 cm⁻¹; **RMN-¹H** (300 MHz, CDCl₃) δ 1.16 (t, 3H, J = 7.0 Hz), 1.93 (s, 3H), 3.02 (t, 2H, J= 6.9 Hz), 3.83-3.85 (bs, 6H), 4.02-4.29 (m, 4H), 6.36 (s, 1H), 6.66 (s, 1H), 6.91 (s, 1H), 7.02 (s, 1H), 7.09 (d, 1H, J= 6.4 Hz), 7.67 (d, 2H, J=7.7 Hz); ¹³ **RMN-¹³C** (75 MHz, CDCl₃)

 δ 10.0, 14.2, 35.4, 37.9, 56.2, 59.4, 69.2, 113.4, 113.9, 115.5, 126.2, 127.5, 127.8, 128.6,

129.7, 130.7, 133.1, 137.5, 144.7, 148.3, 148.5, 148.6, 148.7, 164.6; **EM** (DART+) *m/z* (rel. int. %): 432 (M⁺- 73, 15), 245 (100), 243 (98); **EM-AR** (ESI+): Calcd. para $[C_{24}H_{25}BrClNO_4+H]^+$: 506.0556. Observado: 506.0569.

4-(3-aminofenil)-1-(2-bromo-4,5-dimetoxifenil)etil-5-metil-1H-pirrol-3-carboxilato de etilo (3k²).

Rendimiento 69% (0.69g); sólido blanco p.f. 47–48°C; CCF (AcOEt–hexano–TEA, 50:40:10 v/v/v). Las propiedades físicas y los datos espectroscopicos coinciden con los descritos en la literatura [14].

1-bencil 4'-etil-1'-(2-bromo-4,5-dimetoxifenil)etil-2'-metil-1H,1'H-[2,3'-bipirrol]-1,4'dicarboxilato (3m').

Rendimiento 68% (0.35g); sólido amarillo p.f. 84–86°; TLC (hexano–AcOEt–TEA, 65:45:5, v/v/v). **IR** (KBr) 1682, 1601 cm⁻¹; **RMN-¹H** (300 MHz, CDCl₃) δ 1.17 (t, 3H, J =7.1Hz), 1.70 (s, 3H), 3.00 (t, 2H, J = 6.8 Hz), 3.69 (s, 3H), 3.82 (s,3H), 3.95 (t, 2H, J = 7.2 Hz), 4.21 (q, 2H, J = 7.0 Hz), 4.84(s, 2H), 6.17-6.19 (bs,1H), 6.37(s, 1H), 6.65(s,

1H), 6.70-6.73(m, 1H), 6.85 (d,1H, *J*= 1.8 Hz), 6.89 (d, 1H, *J*= 2.0 Hz), 6.98(s,1H), 7.17 (s, 1H), 7.27 (s, 1H), 7.66 (d, 2H, *J*= 8.0 Hz); **RMN-¹³C** (75 MHz, CDCl₃) δ 9.7, 14.3, 47.1, 50.9, 56.0, 56.2, 59.3, 69.1, 107.3, 109.3, 113.3, 113.5, 113.9, 115.5, 120.9, 125.6, 126.8, 127.0, 127.2, 127.5, 127.8, 128.2, 128.7, 129.7, 131.0, 139.3, 144.7, 148.4, 148.7,

164.5; **EM** (EI) *m/z* (rel. int. %): 550 (M⁺-44, 22), 242 (100), 229 (53); **EM-AR** (ESI+): Calcd. para [C₃₀H₃₁BrN₂O₆-CO₂]⁺: 551.1545. Observado: 551.1551.

1-(2-bromo-4,5-dimetoxifenil)etil-4-(furan-2-il)-5-metil-1H-pirrol-3-carboxilato de etilo (3n).

MHz, CDCl₃) δ 10.5, 14.5, 37.9, 47.1, 56.2, 56.3, 59.6, 108.8, 110.7, 113.6, 113.8, 114.1, 115.6, 126.5, 127.9, 128.8, 130.2, 141.2, 148.6, 148.9, 149.0, 164.4; **EM** (EI) *m/z* (rel. int. %): 461 (M⁺, 25), 382 (100), 309 (93); **EM-AR** (FAB+): Calcd. para [C₂₂H₂₄BrNO₅]⁺: 461.0838. Observado: 461.0842.

1-(2-bromo-4,5-dimetoxifenil)etil-5-metil-4-(piridin-2-il)-1H-pirrol-3-carboxilato de etilo (30).

Rendimiento 68% (1.32g); sólido amarillo p.f. 56–58°C; TLC (hexano–AcOEt–TEA, 60:30:10, v/v/v). **IR** (ATR) 1694 cm⁻¹; **RMN-¹H** (300 MHz, CDCl₃) δ 1.23 (t, 3H, J= 7.1 Hz), 2.06 (s, 3H), 3.07 (t, 2H, J = 6.8 Hz), 3.71 (s, 3H), 3.86 (s, 3H), 4.05 (t, 2H, J= 6.9 Hz), 4.19 (q, 2H, J = 7.0 Hz), 6.29 (s, 1H), 6.42 (s, 2H), 7.02 (s, 1H), 7.25 (d, 2H, J = 4.4 Hz), 7.44 (s, 1H); **RMN-¹³C** (75 MHz,

CDCl₃) δ 10.5, 14.4, 37.9, 47.1, 56.1, 56.3, 59.5, 100.0, 108.7, 110.6, 112.6, 113.5, 113.7, 114.1, 115.6, 126.4, 128.7, 130.1, 134.1, 141.1, 148.6, 148.8, 164.3; **EM** (EI) *m/z* (rel.

int. %): 230 (M⁺-242, 100), 184 (89), 156 (80); **EM-AR** (FAB+): Calcd. para $[C_{23}H_{25}BrN_2O_4+H]^+$: 473.3590. Observado: 473.1051.

7.4 Procedimiento General para la síntesis 5,6-dihidropirrolo[2,1-a]isoquinolinas 4a', 4b, 4c, 4d', 4e, 4f, 4i, 4k',4l', 4m', 4n, 4o,

Se pesa el *N*-alquilpirrol y se disuelve en tolueno seco y desoxigenado (10 mL) para posteriormente calentar a tempertura de reflujo y añadir gota a gota una solución de *n*-Bu₃SnH (1.0 mL, 3,7 mmol) en tolueno (5 ml) (bomba de adición) por 7 h. Durante este tiempo se añade DLP (1.49g, 3.7 mmol, 0.11g/30min) una vez concluida la reacción se concentra a sequedad a presión reducida y el crudo de reacción es purificado por cromatografía en columna en gel de sílice, iniciando con adición de hexano para remover *n*-Bu₃SnBr.

8,9-dimetoxi-3-metil-2-(3-(piperazinil-1-carbonil)fenil)-5,6-dihidropirrolo[2,1a]isoquinolina-1-carboxilato de etilo (4a').

Rendimiento 90% (0.1g); sólido amarillo p.f. 102-104°C; CCF (hexano–AcOEt–TEA, 45:45:10, v/v/v). **IR** (KBr) 1691,1609 cm⁻¹; **RMN-¹H** (300 MHz, CDCl₃) δ 0.91 (t, 3H, J= 7.3 Hz), 2.13 (s,

3H), 2.97 (t, 2H, *J* = 6.6 Hz), 3.52-3.64 (m, 8H), 3.87 (bs, 6H), 3.97-4.06 (m, 4H), 6.70 (s, 1H), 7.28-7.32 (m, 1H), 7.33 (d, 1H, *J*= 1.9 Hz), 7.41 (dd, 1H, *J*= 8.7 Hz, *J*= 6.1 Hz), 7.85 (s, 1H), 8.08 (s, 1H); **RMN-¹³C** (75 MHz, CDCl₃) δ 10.4, 13.9, 18.0, 25.1, 27.9, 29.3, 29.8, 41.3, 56.0, 56.1, 60.0, 110.6, 110.7, 121.2, 122.7, 125.0, 125.5, 126.0, 128.3, 128.8, 131.4, 132.1, 134.5, 137.1, 147.8, 148.3, 159.8, 161.0, 166.6, 171.0; MS (EI) *m/z*

(rel. int. %): 531 (M⁺, 100), 503 (22), 313 (12); HR-MS (ESI+): Calcd. para $[C_{30}H_{33}N_3O_6+H]^+$: 532.2247. Observado: 532.2452.

8,9-dimetoxi-3-metil-2-(3-(morfolin-4-carbonil)fenil)-5,6-dihidropirrolo[2,1a]isoquinolina-1-carboxilato de etilo (4b).

Rendimiento 87% (0.39g); sólido blanco p.f. 190– 192°C; CCF (DCM–Acetona–TEA, 50:45:5, v/v/v). **IR** (KBr) 1725 ,1695 cm⁻¹; **RMN-¹H** (300 MHz, CDCl₃) δ 0.90 (t, 3H, *J* = 7.1 Hz), 2.13 (s, 3H), 2.97

(t, 2H, J = 6.5 Hz), 3.52-3.79 (m, 8H), 3.88 (bs, 8H), 4.00 (q, 2H, J = 7.1 Hz), 6.70 (s, 1H), 7.26-7.38 (m, 4H), 7.88 (s, 1H), **RMN-¹³C** (75 MHz, CDCl₃) δ 10.4, 13.8, 29.2, 29.7, 41.2(x2), 55.9, 56.0, 59.9, 67.0(x2), 109.8, 110.6, 121.1, 122.7, 124.9, 125.4, 125.9, 128.0(x2), 128.6, 131.3, 131.7, 134.7, 136.9, 147.7, 148.1, 166.6, 170.6; **EM** (EI) m/z (rel. int. %): 505 (M⁺+H, 100), 504 (20), 433 (12); **EM-AR** (ESI+): Calcd. para $[C_{30}H_{32}N_2O_6+H]^+$: 505.2338. Observado: 505.2323.

2-(3-carbamoilfenil)-8,9-dimetoxi-3-metil-5,6-dihidropirrolo[2,1-a]isoquinolina-1carboxilato de etilo (4c).

Rendimiento 80% (0.13g); sólido blanco p.f. 195– 197°C; CCF (DCM–Acetona, 70:30, v/v). **IR** (KBr) 3531, 1720, 1698, cm⁻¹; **RMN-¹H** (300 MHz, CDCl₃) δ 0.87 (t, 3H, *J* = 7.2 Hz), 2.17 (s, 3H), 3.00 (t, 2H, *J* =

6.0 Hz), 3.92 (bs, 6H), 3.99 -4.13 (m, 4H), 5.59-6.28 (bs, 2H), 6.73 (s, 1H), 7.44 (s, 2H), 7.69 (s, 1H), 7.77 (s, 1H), 7-98 (s, 1H); **RMN-¹³C** (75 MHz, CDCl₃) δ 10.3, 13.7, 29.3, 41.2, 55.9, 56.0, 59.9, 100.0, 110.0, 110.5, 112.1, 125.3, 125.4, 125.9, 127.9, 128.0, 128.9, 132.7, 133.8, 137.2, 147.7, 148.1, 151.2, 166.6, 169.5; **EM** (EI) *m/z* (rel. int. %): 434 (M⁺, 100), 419 (22), 391 (5); **EM-AR** (ESI+): Calcd. para $[C_{25}H_{26}N_2O_5+H]^+$: 435.1920. Observado: 435.1908.

2-(3-(benziloxi)fenil)-8,9-dimetoxi-3-metil-5,6-dihidropirrolo[2,1-a]isoquinolina-1carboxilato de etilo (4d°).

Rendimiento 87% (0.34g); sólido amarillo p.f. 69-71°C; CCF (hexano–AcOEt–TEA, 50:45:5, v/v/v). **IR** (ATR) 1731 cm⁻¹; **RMN-¹H** (400 MHz, CDCl₃) δ 0.88 (t, 3H, *J* = 7.3 Hz), 2.11 (s, 3H),

2.96 (t, 2H, *J* = 6.6 Hz), 3.87 (s, 3H), 3.89 (s, 3H, 2H solapada), 3.99 (q, 2H, *J* = 7.1 Hz), 5.06 (s, 2H), 6.68 (s, 1H), 6.79-6.90 (m, 4H), 7.22-7.43 (m, 5H), 7.94 (s, 1H); **RMN-¹³C** (101 MHz, CDCl₃) δ 10.3, 13.6, 27.8, 41.2, 55.9, 56.0, 60.0, 69.9, 110.2, 110.6, 112.8, 116.3, 121.3, 122.9, 123.4, 125.1, 125.6, 127.4, 127.5, 127.8, 128.3, 128.5(x2), 128.6, 130.7, 137.3, 138.0, 147.7, 147.9, 158.3, 167.1; **EM** (EI) *m/z* (rel. int. %): 497 (M⁺, 100), 482 (15), 454 (3); **EM-AR** (ESI+): Calcd. para [C₃₁H₃₁NO₅+H]⁺: 498.2280. Observado: 498.2266.

8,9-dimetoxi-2-(3-metoxifenil)-3-metil-5,6-dihidropirrolo[2,1-a]isoquinolina-1carboxilato de etilo (4e).

Rendimiento 86% (0.46g); p.f. 92–94°C; CCF (hexano– AcOEt–TEA, 50:45:5, v/v/v). **IR** (KBr) 1690 cm⁻¹; **RMN-¹H** (300 MHz, CDCl₃) δ 1.15 (t, 3H, *J* = 7.1 Hz), 1.93 (s, 3H), 3.10 (t, 2H, *J* = 7.0 Hz), 3.72 (s, 3H), 3.80

(s,3H), 3.86 (s, 3H), 4.04-4.16 (m, 4H), 6.34 (s, 1H), 6.75-6.85 (m, 3H), 7.02 (s, 1H), 7.29 (s,1H), **RMN-¹³C** (75 MHz, CDCl₃) δ 10.0, 14.3, 37.9, 47.2, 56.1, 56.3, 59.6, 60.5, 113.4, 113.5, 114.3, 115.7, 120.9, 121.3, 125.5, 126.5, 128.3, 128.5, 128.6, 137.0, 137.4, 147.8,

148.7, 148.9, 164.4; **EM** (EI) *m/z* (rel. int. %): 421 (M⁺, 100), 406 (23), 378 (12); **EM-AR** (FAB+): Calcd. para [C₂₅H₂₇NO₅]⁺: C₂₅H₂₇NO₅. Observado: 421.1899.

2-(3-cianofenil)-8,9-dimetoxi-3-metil-5,6-dihidropirrolo[2,1-a]isoquinolina-1carboxilato de etilo (4t).

Rendimiento 90% (0.36g); sólido amarillo p.f. 48-50°C; CCF (hexano–AcOEt, 70:30, v/v). **IR** (KBr) cm⁻¹ 2926, 1692; **RMN-¹H** (300 MHz, CDCl₃) δ 0.87 (t, 3H, *J* = 7.1 Hz), 2.10 (s, 3H), 2.96 (t, 2H, *J* = 6.5 Hz), 3.87 (s, 3H),

3.89 (s, 3H), 3.89-3-93 (m, 3H), 3.99 (q, 2H, J = 7.1 Hz), 6.69 (s, 1H), 7.43-7.46 (m, 1H), 7.50-7.54 (m, 2H), 7.98 (s, 2H); **RMN-¹³C** (75 MHz, CDCl₃) δ 10.0, 14.3, 37.9, 47.2, 56.1, 56.3, 59.6, 111.7, 113.4, 113.5, 114.3, 115.7, 119.3, 121.0, 126.5, 128.3, 128.4, 128.6, 129.9, 134.2, 135.3, 137.1, 148.6, 148.9, 164.4; **EM** (EI) m/z (rel. int. %): 416 (M⁺, 100), 401 (22), 373 (8); **EM-AR** (FAB+): Calcd. para [C₂₅H₂₄N₂O₄]⁺: 416.1736. Observado: 416.1740.

8,9-dimetoxi-3-metil-2-(3-(trifluorometil)fenil)-5,6-dihidropirrolo[2,1-a] isoquinolina-1-carboxilato de etilo (4h).

Rendimiento 89% (0.26g); sólido blanco p.f. 50-52°C; CCF (hexano–AcOEt, 70:30, v/v). **IR** (KBr) cm⁻¹ 2956, 1699, 1595; **RMN-¹H** (400 MHz, CDCl₃) δ 1.27 (t, 3H, *J* = 7.2 Hz), 2.43 (s, 3H), 2.89 (t, 2H, *J*=6.9 Hz), 3.80 (s, 3H), 3.85

(bs, 5H), 4.20 (t, 2H, *J* = 6.9 Hz), 6.60 (d, 1H, J=2.0 Hz), 6.66 (dd, 1H, *J*= 8.0 Hz, *J*= 1.0 Hz), 6.75 (d, 1H, *J* = 8.2 Hz), 7.28 (s, 1H), 7.67 (d, 2H, *J* = 8.3.0 Hz); **RMN-¹³C** (101 MHz, CDCl₃) δ 10.3, 14.2, 21.7, 35.0, 55.9, 56.0, 70.9, 110.7, 111.4, 112.1, 112.4, 121.1, 127.9(x3), 128.9, 129.8(x3), 133.1, 144.8, 148.1, 149.0, 149.1, 166.6; **EM** (EI) *m/z* (rel.

int. %): 459 (M⁺, 3), 436 (100), 151 (99); **EM-AR** (ESI+): Calcd. para $[C_{25}H_{24}F_3NO_4+H]^+$: 460.1735. Observado: 460.1736.

2-(3-fluorofenil)-8,9-dimetoxi-3-metil-5,6-dihidropirrolo[2,1-a]isoquinolina-1carboxilato de etilo (4i).

Rendimiento 80% (0.16g); sólido amarillo p.f. 68-70°C; CCF (hexano–AcOEt, 80:20, v/v). **IR** (KBr) cm⁻¹ 3521, 1699, 1612; **RMN-¹H** (400 MHz, CDCl₃) δ 0.92 (t, 3H, J = 7.1 Hz), 2.43 (s, 3H), 2.90 (t, 2H, J = 7.0 Hz), 3.81 (s,

3H), 3.85 (s, 3H), 4.04 (q, 2H, J = 7.1 Hz), 4.20 (t, 2H, J = 7.0 Hz), 6.97 (tq, 2H, J = 8.2 Hz, J = 1.5 Hz), 7.03 (dt, 1H, J = 7.6 Hz, J = 1.2 Hz), 7.65-7.70 (m, 2H), 8.00 (s, 1H); **RMN-¹³C** (101 MHz, CDCl₃) δ 9.3, 12.6, 34.0, 40.2, 54.9, 58.9, 69.8, 109.6, 110.3, 111.0, 111.8, 115.8, 116.0, 120.0, 124.3, 124.8, 126.8, 128.0, 128.7, 143.6, 146.7, 147.0, 160.3, 165.7; **EM** (EI) *m/z* (rel. int. %): 409 (M⁺, 20), 394 (3), 336(35); **EM-AR** (ESI+): Calcd. para [C₂₄H₂₄FNO₄+H]⁺: 410.1767. Observado: 410.1769.

2-(3-clorofenil)-8,9-dimetoxi-3-metil-5,6-dihidropirrolo[2,1-a]isoquinolina-1carboxilato de etilo (4j).

Rendimiento 90% (0.38g); aceite amarillo, CCF (hexano–AcOEt, 80:20, v/v). **IR** (KBr) cm⁻¹1695, 1081; **RMN-¹H** (400 MHz, CDCl₃) δ (ppm): 0.93 (t, 3H, *J* = 7.3 Hz), 2.43 (s, 3H), 2.90 (t, 2H, *J* = 7.0 Hz), 3.81 (s,

3H), 3.85 (s, 3H), 3.92 (t, 2H, J = 7.0 Hz), 4.20 (q, 2H, J = 6.9 Hz), 6.60-6.76 (m, 2H),
7.27 (d, 2H, J = 8.5 Hz), 7.68 (d, 2H, J = 8.0 Hz); **RMN-¹³C** (101 MHz, CDCl₃) 9.8, 13.2,
29.2, 34.5, 55.3, 55.4, 70.3, 110.0, 110.1, 110.8, 111.5, 120.5, 127.3(x2), 128.3,
129.2(x2), 129.8, 130.0, 132.6, 144.3, 147.4, 148.5, 164.8; **EM** (EI) *m/z* (rel. int. %): 425

(M⁺, 8), 410 (3), 164 (100); **EM-AR** (ESI+): Calcd. para [C₂₄H₂₄ClNO₄+H]⁺: 426.1472. Observado: 426.1465.

2-(3-aminofenil)-8,9-dimetoxi-3-metil-5,6-dihidropirrolo[2,1-a]isoquinolina-1carboxilato de etilo (III).

Rendimiento 75% (0.31g); sólido blanco p.f. 47–48°C; TLC (AcOEt–hexano–TEA, 50:40:10 v/v/v). Las propiedades físicas y los datos espectroscopicos coinciden con los descritos en la literatura [14].

2-(1-((benziloxi)carbonil)-1H-pirrol-2-il)-8,9-dimetoxi-3-metil-5,6-dihidropirrolo[2,1a]isoquinolina-1-carboxilato de etilo (4m²).

Rendimiento 91% (0.31g); sólido café p.f. 46-48°C, CCF (hexano–AcOEt, 70:30, v/v). **IR** (KBr) cm–1 1690; **RMN-¹H** (500 MHz, (CD₃)₂ CO) δ : 1.14 (t, 3H, *J* = 7.1 Hz), 1.78 (s, 3H), 3.01-3.17 (m, 2H), 3.68

(s, 3H), 3.81 (s, 3H), 4.01-4.14 (m, 4H), 4.88 (s, 2H), 5.82 (dd, 1H, J = 3.4 Hz, J = 1.8 Hz), 6.06 (dd, 1H, J = 3.4 Hz, J = 2.8 Hz), 6.75 (dd, 1H, J = 2.8 Hz, J = 1.8 Hz), 6.78 (s, 1H), 6.90-6.95 (m, 2H), 7.08 (s, 1H), 7.13-7.25 (m, 2H), 7.33 (s, 1H); **RMN-¹³C** (126 MHz, (CD₃)₂ CO) δ 9.1, 13.8, 37.2, 46.9, 50.6, 55.3, 55.6, 58.4, 106.9, 109.0, 113.3, 113.6, 114.3, 114.6, 115.7, 120.6, 126.0, 126.8(x2), 127.0(x2), 127.3, 128.0(x2), 129.2, 130.7, 139.7, 149.1, 149.2, 163.7; **EM** (EI) m/z (rel. int. %): 470(M⁺-44, 100), 379 (13), 164 (87); **EM-AR** (FAB+): Calcd. para [C₃₀H₃₀N₂O₆+H]⁺: 515.2182. Observado:

2-(furan-2-il)-8,9-dimetoxi-3-metil-5,6-dihidropirrolo[2,1-a]isoquinolina-1carboxilato de etilo (4n).

Rendimiento 75% (0.18g); sólido amarillo p.f. 146–148°C; CCF (hexano–AcOEt–DCM, 40:35:5, v/v/v). **IR** (KBr) 1685 cm⁻¹; **RMN-¹H** (500 MHz, CDCl₃) δ 1.08 (t, 3H, *J* = 7.1 Hz), 2.24 (s, 3H), 2.94 (t, 2H, *J* = 6.5 Hz), 3.87 (s, 3H), 3.89 (s,

overlapping, 5H), 4.13 (q, 2H, *J* = 7.1 Hz,), 6.23 (dd, 1H, *J* = 3.2 Hz, *J* = 0.9 Hz), 6.68 (s, 1H), 7.41 (dd, 1H, *J* = 1.9 Hz, *J* =0.8 Hz), 7.92 (s, 2H); **RMN-¹³C** (126 MHz, CDCl₃) δ 10.5, 14.1, 29.1, 41.2, 56.0(x2), 60.2, 107.3(x2), 110.0, 110.3, 110.6, 113.0, 121.1, 125.2, 127.6, 131.1, 141.1, 147.7, 148.1, 149.5, 166.6; **EM** (EI) *m/z* (rel. int. %): 381 (M⁺, 100), 366 (35), 336 (22); **EM-AR** (FAB+): Calcd. para [C₂₂H₂₃NO₅+H]⁺: 381.1576. Observado: 381.1569.

8,9-dimetoxi-3-metil-2-(piridin-2-il)-5,6-dihidropirrolo[2,1-a]isoquinolina-1carboxilato de etilo (40).

Rendimiento 85% (0.36g); sólido amarillo p.f. 150–152 °C; CCF (hexano–AcOEt, 60:40, v/v). **IR** (KBr): 3167, 1692 cm⁻¹; **RMN-¹H** (400 MHz, CDCl₃) δ 0.89 (t, 3H, *J* = 7.1 Hz), 2.27 (s, 3H), 2.98 (t,2H, *J* = 6.5 Hz), 3.91 (s, 3H), 3.94

(s, overlapping, 5H), 4.03 (q, 2H, J = 7.1 Hz,), 6.72 (s, 1H), 7.15 (ddd, 1H, J = 7.4 Hz, J = 4.9 Hz, 1.2 Hz), 7.30 (d, 1H, J = 7.9 Hz), 7.66 (td, 1H, J = 7.7 Hz, J = 1.6 Hz), 8.09 (s, 1H), 8.60-8.65 (m, 1H); **RMN-¹³C** (101 MHz, CDCl₃) δ 10.0, 13.9, 29.2, 41.1, 56.0(x2),

59.8, 110.5, 110.7, 120.5, 121.3, 121.5, 123.2, 124.9, 125.5, 127.1, 131.4, 135.7, 147.5, 148.2, 148.9, 156.1, 166.6; **EM** (EI) *m/z* (rel. int. %): 392 (M⁺, 70), 347 (100), 230 (45); **EM-AR** (ESI+): Calcd. para [C₂₃H₂₄N₂O₄+H]⁺: 393.1814. Observado: 393.1800.

8,9-dimetoxi-3-metil-2-(3-(piperazin-1-carbonil)fenil)-5,6-dihidropirrolo [2,1a]isoquinolina-1-carboxilato de etilo (4a).

Una mezcla de **4a'** (0.1 g, 0.2 mmol) e hidrazina (0.16 g, 3.38 mmol) disuelta en etanol (5 mL), se calentó a reflujo por 2 h. Una vez terminada la reacción, el disolvente fue eliminado a presión

reducida y el crudo de la reacción purificado por cromatografía en columna con gel de sílice, (DCM–Acetona, 50:50, v/v). Se obtuvo un sólido amarillo que corresponde al triciclo **4a** en un rendimiento del 70% y p.f. 110-112 °C. **IR** (ATR) 3050, 1673 cm⁻¹; **RMN-¹H** (300 MHz, CDCl₃) δ 0.91 (t, *J* = 3H, 7.5 Hz), 2.13 (s, 3H), 2.97 (t, 2H, *J* = 6.4 Hz), 3.52-3.64 (m, 8H), 3.88 (bs, 6H), 3.90-4.06 (m, 4H), 6.70 (s, 1H), 7.22–7.45 (m, 3H), 7.85 (s, 1H), 8.08 (s, 1H); **RMN-¹³C** (75 MHz, CDCl₃) δ 10.4, 13.9, 18.0, 25.1, 27.9, 29.2, 29.8, 47.3, 56.0, 56.1, 60.0, 110.6, 110.7, 121.2, 122.7, 125.0, 125.5, 126.0, 128.3, 128.8, 131.4, 132.1, 134.5, 137.1, 147.7, 148.3, 159.8, 161.0, 166.6; **EM** (EI) *m/z* (rel. int. %): 503 (M⁺, 100), 488 (15), 151 (45); **EM-AR** (ESI+): Calcd. para [C₂₉H₃₃N₃O₅+H]⁺: 504.5709. Observado: 504. 5711.

75

8,9-dimetoxi-2-(3-hidroxifenil)-3-metil-5,6-dihidropirrolo[2,1-a]isoquinolina-1carboxilato de etilo (4d).

Una mezcla de la pirroloisoquinolina **4d'** (0.4 g, 0.8 mmol) disuelta en 5 mL de etanol anhidro y Pd/C 30% (0.1 eq) se hidrogenó a 80 psi y temperatura ambiente, por 6 horas Una vez que se observó la desaparición total

de la materia prima, la mezcla de reacción se filtró al vacío sobre celita, que se lavó con 5 mL de etanol. El disolvente se eliminó por destilación al vacio y el crudo de reacción fue purificado por cromatografía en columna de gel de sílice (hexano–AcOEt–TEA, 50:45:5, v/v/v), obteniendo el triciclo **4d**, en un 95% de rendimiento, siendo un aceite de color amarillo. **RMN-¹H** (700 MHz, CDCl₃) δ 0.91 (t, 3H, *J* = 7.2 Hz), 2.15 (s, 3H), 2.96 (t, 2H, *J* = 6.6 Hz), 3.88 (s, 3H), 3.90 (bs, 5H), 4.02 (c, 2H, *J* = 7.2 Hz), 4.66 (sa, 1H), 6.69 (s, 1H), 6.72 (d, 2H, *J* = 8.3 Hz,), 6.80 (d, 1H, *J* = 7.5 Hz), 7.19 (t, 1H, *J* = 7.8 Hz), 7.93 (s, 1H); **RMN-¹³C** (176 MHz, CDCl₃) δ 10.3, 13.7, 29.2, 41.2, 55.9, 60.0, 110.2, 110.6, 112.9, 116.9, 121.3, 122.8(x2), 123.1, 125.1, 125.6, 128.8(x2), 130.7, 138.2, 147.7, 147.9, 155.0, 167.1; **EM** (EI) *m/z* (rel. int. %): 407 (M⁺, 85), 392 (28), 364 (10); **EM-AR** (ESI+): Calcd. para [C₂₄H₂₅NO₅+H]⁺: 407.1733. Observado: 407.1743. 2-(3-nitrofenil)-8,9-dimetoxi-3-metil-5,6-dihidropirrolo[2,1-a]isoquinolina-1carboxilato de etilo (4g).

Una mezcla de **3g** (0.8 g, 1.5 mmol), TEA (1.8 eq), Pd(OAc)₂ (0.1 eq) y PPh₃ (0.4 eq) disuelta en CH₃CN anhidro (20 mL) se calentó a reflujo por 6 h y después se filtró al vacio sobre celita, y posteriormente la mezcla

de reacción se evaporó a sequedad, obteniendo un crudo de color amarillo que fue purificado por cromatografia en columna de gel de sílice (hexano–AcOEt, 70:30, v/v), para obtener el compuesto **4g** en un 81% de rendimiento; sólido amarillo p.f. 146–148°C. **IR** (KBr) cm⁻¹ 3075, 2956, 1709, 1611, 1517; **RMN-¹H** (300 MHz, CDCl₃) δ 0.89 (t, 3H, J = 7.1 Hz), 2.16 (s, 3H), 3.00 (t, 2H, J = 6.5 Hz), 3.91 (s, 3H), 3.92 (bs, 5H), 4.03 (q, 2H, J = 7.1 Hz), 6.73(s,1H), 7.51 (td, 1H, J = 7.6.0 Hz, J = 1.0 Hz), 7.58 (dt, 1H, J = 7.6 Hz, J = 1.0 Hz), 8.02 (s, 1H), 8.10-8.16 (m, 2H); **RMN-¹³C** (76 MHz, CDCl₃) δ 10.4, 13.8, 29.3, 41.4, 56.0, 56.1, 60.0, 100.0, 109.7, 110.7, 110.9, 121.0, 121.6, 125.2, 125.7, 126.3, 128.4, 132.2, 136.6, 138.8, 147.8, 147.9, 148.4, 164.2; **EM** (EI) *m/z* (rel. int. %): 436 (M⁺, 100), 421(19), 393 (8); **EM-AR** (FAB+): Calcd. para [C₂₄H₂₄N₂O₆+H]⁺: 436.1634. Observado: 436.1636.

2-(3-bromofenil)-8,9-dimetoxi-3-metil-5,6-dihidropirrolo[2,1-a]isoquinolina-1carboxilato de etilo (4k).

Una solución del compuesto **III** (0.1 g, 0.2 mmol), *t*-BuONO (0.05 g, 0.5 mmol) y CuBr₂ (0.27 g, 1.2 mmol) en acetonitrilo, a 0 °C, fue agitada por 3 h, después de lo cual la mezcla de reacción se concentro a sequedad y el

residuo fue purificado mediante cromatografia en columna con gel de sílice (hexano-

AcOEt, 70:30, v/v), se obtuvo un aceite amarillo con un rendimiento del 45% que corresponde al triciclo **4k**. **IR** (CDCl₃) 1690 cm⁻¹; **RMN-¹H** (400 MHz, CDCl₃) δ 0.94 (t, 3H, *J* = 7.1 Hz), 2.43 (s, 3H), 2.89 (t, 2H, *J* = 6.9 Hz), 3.80 (s, 3H), 3.85 (s, 3H), 3.89-3.94 (m, 4H), 6.60 (d, 1H, J= 2.0 Hz), 6.66 (dd, 1H, *J* = 8.1 Hz, *J* = 2.0 Hz), 6.70-6.77 (m, 2H), 7.28 (d, 1H, *J* = 1.8 Hz), 7.64-7.71 (m, 1H); **RMN-¹³C** (101 MHz, CDCl₃) 10.3, 13.7, 21.6, 35.0, 55.8, 55.9, 70.8, 110.5, 111.3, 112.0, 121.0, 127.8, 128.8, 128.9, 129.1, 129.7, 130.0, 133.1, 144.6, 144.7, 147.7, 148.0, 148.9, 166.6; **EM** (EI) *m/z* (rel. int. %): 469 (M⁺, 27), 454(12), 164(100); **EM-AR** (ESI+): Calcd. para [C₂₄H₂₄BrNO₄+H]⁺: 470.0967. Observado: 470.0959.

8,9-dimetoxi-3-metil-2-(1H-pirrol-2-il)-5,6-dihidropirrolo[2,1-a]isoquinolina-1carboxilato de etilo (4m).

Una mezcla del triciclo **4m'** (0.1 g, 0.2 mmol) y Pd/C 30% (0.1 eq) disuelto en EtOH anhidro (10 mL) se hidrogenó a 80 psi por 12 h, a temperatura ambiente. Posteriormente, se filtró al vacío con celita y se concentró a sequedad. El crudo de

reacción fue purificado por columna cromatográfica en gel de sílice (hexano–AcOEt, 70:30, v/v), obteniendo aceite amarillo correspondiente al compuesto **4m** con un 90% de rendimiento. **IR** (KBr) cm⁻¹ 1692; **RMN-¹H** (300 MHz, (CD₃)₂ CO) δ 0.96 (t, 3H, *J* = 7.1 Hz), 2.15 (s, 3H), 2.87 (t, 2H, *J* = 6.5 Hz), 3.68 (s, 3H), 3.70 (s, 3H), 3.88 (t, 2H, *J* = 6.6 Hz), 3.99 (c, 2H, *J* = 7.1 Hz), 6.13 (d, 1H, *J* = 3.2 Hz), 6.34 (dd, 1H, *J* = 3.2 Hz, *J* = 1.8 Hz), 6.77 (s, 1H), 7.40 (d, 1H, *J* = 1.9 Hz), 7.78 (s, 1H), 9.61 (sa, 1H); **RMN-¹³C** (101 MHz, (CD₃)₂ CO) δ 9.6, 13.5, 28.5, 41.0, 55.2, 55.3, 59.5, 106.1, 106.7(x2), 110.5, 110.6, 111.4(x2), 121.0, 125.9, 127.3, 140.9(x2), 142.4, 148.7, 160.0; **EM** (EI) *m/z* (rel. int. %):

365 (M⁺-15, 10), 335(12), 229 (100); **EM-AR** (ESI+): Calcd. para [C₂₂H₂₄N₂O₄-15]⁺: 365.1509. Observado: 365.1511.

8. Ensayos de Actividad biológica

Los ensayos de citotoxicidad se realizaron en el instituto de Química de la U.N.A.M en el laboratorio de pruebas biológicas bajo la misma metodología empleada que el Instituto Nacional del Cáncer de los E.U.A [49] Procedimiento que se describe a continuación:

Líneas celulares y medio de cultivo

Los compuestos antes sintetizados se probaron en 6 líneas celulares de humanos: HCT-15 (adenocarcinoma colorectal), MCF- 7 (adenocarcinoma mamario), K-562 (leucemia), U-251 (sistema nervioso central), PC-3 (adenocarcinoma de prostata), y SKLU-1 (adenocarcinoma de pulmón). Las líneas celulares fueron cultivadas en medio RPMI-1640 suplementado con 10% de suero fetal bovino, 2 mM L-glutamina, 100 UI/mL de penicilina G, 100 μ gM de sulfato de estreptomicina, 25 μ g/mL de antofericina B, y 1% aminoácidos no esenciales (Gibco). Las celulas se almacenan a una temperatura constante de 37°C en atmósfera de CO₂ y 5% de humedad.

Para asegurar la viabilidad de las células se mantienen en condiciones de humedad de 37% y atmósfera de CO₂ al 5% y se someten a la prueba con azul de tripán (conteo celular/hemocitómetro).

Ensayo citotóxico

Para determinar la actividad citotóxica en los triciclos obtenidos se utilizó el ensayo de unión a proteínas con el colorante SRB (Sulforrodamina B). El procedimiento general se divide en 2 etapas: Obtención del porcentaje de inhibición y determinación del IC₅₀.

1.-En un par de placas de microcultivo (A1 y A2) de 96 pozos cada una, se adicionaron
100 μL de cada línea celular junto con un blanco (Medio de crecimiento RPM-1640).
Una tercera placa (B) se utilizó como testigo (evaluación a tiempo cero) a ésta se adicionó

79

el mismo volumen por línea celular, así como el de referencia o blanco (medio de crecimiento RPMI-1640).

2.-Las densidades celulares que fueron colocadas en suspensión por pozo se indican en la siguiente tabla:

Línea celular	Células/100 µL
MCF-7	5000
K-562	5000
U-251	7500
PC-3	7500
SKLU-1	7500
HCT-15	10000

 Tabla 11: Densidades celulares por pozo de línea celular

3.-Una vez preparadas las placas (A1, A2 y B) se llevaron a la incubadora a una temperature de 37 °C en atmósfera de CO_2 al 5% por 24h.

4.-Una vez que finalizaron las 24 h, se adicionó a las placas A1 y A2 100 μ L de las pirroloisoquinolinas a evaluar, las cuales fueron previamente disueltas en medio RPMI 1640 y DMSO al 0.1% para incubarlas posteriormente por 48 h a 37 °C en atmósfera de CO₂ al 5%. Por separado a la placa **B** únicamente se añadieron 100 μ L del medio de cultivo RPMI-1640 y se llevó a las mismas condiciones incubación.

5.-Al concluir el tiempo de incubación se procedió a fijar las células antineoplásicas; lo cual se logra al adicionar una solución acuosa de ácido tricloroacético (TCA) al 50% (50 μ L/pozo) para incubar las placas posteriormente a 4°C por 60 min.

6.-Los sobrenadantes de las placas se desechan y las placas son lavadas posteriormente con agua destilada por triplicado y secadas a temperatura ambiente.

7.-Una vez secas las placas, las células se tratarón adicionando $100 \,\mu\text{L}$ sulforrodamina B (SBR) al 4% durante 30 min a temperatura ambiente. Cabe mencionar que la SBR (colorante aniónico) se une a las proteínas de las células cancerosas, las cuales fueron previamente fijadas con ATC.

8.-Como siguiente paso las placas fueron lavadas por triplicado con una disolución de ácido acético al 1% y se dejaron secar a temperatura ambiente.

9.-El colorante es extraido añadiendo 100 μ L de una solucón 10 mM de base tris no amortiguada.

10.-Por último se tomó la lectura de la densidad óptica (D.O) de las muestras tratadas en un lector de microplacas Bio Kinetis a una longitud de onda de 515 nm. Es importante mencionar que la intensidad del color es directamente proporcional al número de células vivas, de manera que, a mayor coloración en los pozos, mayor cantidad de células vivas y por consiguiente menor porcentaje de inhibición en el crecimiento celular.

Por ciento de inhibición de crecimiento celular

El porcentaje de inhibición del crecimiento cellular (%IC) se calculó para cada concentración y para cada línea celular utilizando la siguiente ecuacion:

Donde:

%C=Porcentaje de inhibición

B=Densidad óptica real promedio de las células tratadas con el compuesto en estudio.

A=Densidad óptica promedio de las células sin tratar.

Concentración inhibitoria 50 (IC₅₀)

Para obtener el IC₅₀ de cada compuesto en las líneas celulares, se repiten los pasos del 1-3 del procedimiento general, aplicando este ensayo únicamente a aquellos compuestos que hayan resultado con un valor mayor de 50% IC. Se utilizó el número de placas de microcultivo necesarias. Posteriormente se adicionó en cada pozo 100 μ L de los triciclos a evaluar, los cuales deben estar previamente disueltos en el medio RPMI-1640 y DMSO al 0.1% en concentaciones de 3.1, 10, 31 y 100 μ L y se incuban a 37 °C durante **48 h** y atomósfera con 5% de CO₂. Posteriormente se continua con el proceso de fijación de las células descrito en los puntos del 5-10 del procedimiento general.

CONCLUSIONES

Conclusiones

- La modificación molecular de los sustituyentes unidos a la posición C-2 de la pirroloisoquinolina I permitió la obtención de compuestos con mejor actividad antiproliferativa, en particular los compuestos 4d (-OH) y 4j (3-Cl).
- Se logró sintetizar las pirroloisoquinolinas 4a-n y evaluar su actividad antiproliferativa en las líneas celulares cancerosas PC-3 (próstata), U-251 (SNC), K-562 (leucemia), HCT-15 (colon), MCF-7 (mama), and SKLU-1 (pulmón).
- La evaluación de la actividad antiproliferativa de las pirroloisoquinolinas 4a, 4b
 y 4c reveló que el grupo metilciclohexilo es necesario para que I tenga la actividad mostrada.
- La evaluación de la actividad antiproliferativa de las pirroloisoquinolinas 4d', 4d-4l, no r eveló, claramente, una relación entre las propiedades electroatractoras o electrodonadoras de los sustituyentes, en la posición *meta* del grupo C2-fenilo, y la actividad mostrada.
- La evaluación de la actividad antiproliferativa de las pirroloisoquinolinas II, IV,
 41, 4m y 4n, tampoco mostró una relación estructura-actividad clara entre la aromaticidad de los sustituyentes unidos a C-2 y su actividad mostrada.
- La presencia de los grupos NH₂ y OH en la posición *meta* del grupo 2-fenilo, hace que los compuestos que los contienen sean los más activos en tres de las seis líneas cancerosas evaluadas, lo que sugiere que la formación de puentes de hidrógeno en el sitio receptor coadyuve a que estos compuestos sean más activos.
- El compuesto 4d (3-OH) mostró mayor actividad antiproliferativa en las líneas celulares cancerosas, PC-3 (próstata), HCT-15 (colon) y SKLU-1 (pulmón), que el Cisplatino, el Iriniotecan, y el Topotecan, respectivamente.

- El compuesto clorado 4j mostró mayor actividad antiproliferativa en tres líneas celulares cancerosas: U-251 (SNC), MCF-7 (mama) y K-562 (Leucemia) que el Etoposido y el Tamoxifeno.
- El diseño de fármacos es una herramienta eficaz para el desarrollo de nuevas moléculas con actividad citotóxica.

BIBLIOGRAFÍA

[1] <u>http://www.cancer.org/espanol/cancer/colonyrecto/resumen/resumen-sobre-el-</u> <u>cancer-colorrectal-what-is-what-is-cancer</u> 06/06/2017

[2] Pinto-Bazurco Mendieta, M. A. E. Arch. Pharm. Chem., 2008, 341,597.

[3] a) http://globocan.iarc.fr/old/summary table pop-06/06/2017

b)http://globocan.iarc.fr/old/summary table pop 06/06/2017

c) http://globocan.iarc.fr/Pages/fact_sheets_population.aspx_06/06/2017

[4] a) Shang, Y.; Wang, L.; He, X.; Zhang, M. RSC, 2012, 2, 7681. b) Dumitrascu, F.;
Georgescu, E.; Georgescu, F.; Mirel-Popa, M.; Dumitrescu, D. Molecules, 2013, 18, 2635.

[5] Ledovskaya, Ma.; Molchanov, A.; Boitsov, V.; Kostikov, R.; Stepakov, A. *Tetrahedron*, **2015**, *71*, 1952.

[6] Tian-ying, An.; Run-qiu, H.; Zhao, Y.; Dian-Kun, Z.; Guang-ren, L.; Yu-cheng, Y.;Jun, G. *Phytochemistry*, **2001**, *58*, 1267.

[7] Mark, F. J. Comput. Chem., 1993, 14, 934.

[8] Suyavaran, A.; Rananurthy, C.; Mareeswaran, R.; Viswa, Y.; Selvakumar, J.;
Mangalaraj, S.; Suresh, M.; Ramaraj, Ch.; Thirunavukkarasu, Ch. *Bioorg. Med. Chem.*,
2015, 23, 488.

[9] Kakhki, S.; Shahosseini, S.; Zarghi, A. Iran J. Pharm. Res., 2014, 13, 71.

[10] Péreard-Viret, J.; Souquet, F.; Marie-Line, M.; Jacques, R. *Tetrahedron Lett.*, 2010, *51*, 96.

[11] Moreno, L.; Párraga, J.; Galán, A.; Cabedo, N.; Primo, J.; Cortes, D. *Bioorg. Med. Chem.*, 2012, 20, 6589.

[12] a) Niewohner, U. WO 03/051877 Chem. Abstr., 2003, 139, 69161. b) Niewohner, U.
et al. US 20040138249A1 Chem. Abstr., 2004, 137, 47106.

[13] Niewohner, U. et al. WO 04/0138249 A1, Chem. Abstr., 2004, 31, 546.

[14] Reyes-Gutiérrez, P.; Camacho, J.; Ramírez-Apan, M.; Osornio, Y.; Martínez, R.*Org. Biomol. Chem.*, **2010**, *8*, 4374.

[15] http://www.who.int/topics/cancer/es/ 06/06/2017

[16] Hanahan, D.; Weinberg, R. Cell., 2011, 144, 646.

[17] Pacheco-Bernal, Ignacio. "Estatus de la vía AKT/TSC2/mTORC1 en un modelo experimental de carcinogénesis renal inducida con FeNTA" Tesis de maestria, UNAM,
2017, 4-5.

[18] https://www.cancer.gov/espanol/cancer/tratamiento/tipos 03/11/2017

[19] Williams, E. American Cancer Society, Cancer Facts and Figures, 2015, 1, 1.

[20] a) Alonso-Castro, A. J.; Ortiz-Sánchez, E.; García-Regalado, A.; Ruiz, G.; Núñez-Martínez, J. M.; González-Sánchez, I.; Quintanar-Jurado, V.; Morales-Sánchez, E.; Dominguez, F.; López-Toledo, G.; Cerbón, M.A.; García-Carrancá, A. J. *Ethnopharmacol.;* 2013, 145, 476. b) Siegel, R. *American Cancer Society, Colorectal Cancer Facts and Figures,* 2011-2013, 1, 1.

[21] Albaladejo-Agudelo, Guillermo "Diseño de fármacos basado en la estructura"D.N.I.: 05434962, Universidad complutense, Trabajo recepcional.

[22] Escalona, J; Carrasco, R; Padrón, J. *"Introducción al diseño racional de fármacos"*Ciudad de La Habana: Editorial Universitaria, 2008.

[23] Medina Franco, J.L.; Martinez Mayorga, K.; Meurice, N. *Expert Opin. Drug Discov.*,**2014**, *9*, 1.

[24] Barreiro, E. Quim. Nova., 2009, 32, 679.

[25] Abou-Alfa, G.; Letourneau, R.; Harker, G.; Modiano, M.; Hurwitz, H.; Tchekmedvian, N.; Feit, K.; Ackerman, J.; De Jager, R.; Eckhardt, G.; O'Reilly, E. J. *Clin. Oncol.*, **2006**, *24*, 4441.

[26] Medina, J. Ciencia, 2007, 1, 1.

[27] Voskressensky, L.; Borisova, T.; Matveeva, M.; Khrustalev, V.; Aksenov, A.; Titov,A.; Vartanova, A.; Varlamov, A. *RSC Anv.*, **2016**, *6*, 74068.

[28] a) Anderson, W.; McPherson, H.; New, J. J. Med. Chem., 1984, 27, 1321.

b) Anderson, W; Heider, A; Raju, N; Yucht, J. J. Med. Chem., 1988, 31, 2097.

[29] Verma, A.; Jha, R.; Chaudhary, R.; Tiwari, R.; Reddy, K.; Danodia, A. J. Org. Chem., **2012**, *77*, 8191.

[30] Petel, B.; Ziegler, C.; Cortese, N.; Plevyak, J.; Zebovitz, T.; Terpko, M.; Heck, R. J. Org. Chem., 1977, 42, 3903.

[31] Valeur, E.; Bradley, M. Chem. Soc. Rev., 2009, 38, 606.

[32] Zhou, G.; Parikn, S.; Tyler, P.; Evans, G.; Furneaux, R.; Zubkova, O.; Benjes, P;Schramm, J. Am. Chem, Soc., 2014, 126, 5690.

[33] Boudreau, M.; Vederas, J. Org. Biomol. Chem., 2007, 5, 627.

[34] Reyes-Gutiérrez, Paul, E. "Síntesis por ciclación vía radicales libres del sistema pirrolo[2,1-a]dihidroisoquinolina" Tesis de maestria, UNAM, **2006**, 72.

[35] Xin-Mou, L.; Jian, L.; Zhonh-Jian, C.; Rong, W.; Shun-YI, W.; Shun-Jun, J. Org.
 Biomol. Chem., 2014, 12, 9471,

[36] Ueda, S.; Kato, M; Inuki, S.; Ohno, H.; Evans, B; Wang, Z.; Peiper, S.; Izumi, K.;
Kodoma, E.; Matsuoka, M.; Nagasawa, H.; Oishi, S.; Fujii, N. *Bioorg. Med. Chem. Lett.*,
2008, 18, 4124.

[37] Olsen, C.; Perera, N.; Albericio, F.; Álvarez, M. Tetrahedron Lett., 2005, 46, 2041.

[38] Wuts, P.; Greene, T. Greene's Protective Groups in Organic Synthesis, 4° edition, New Jersey, 2007, 775.

[39] Shao, X.; Jiang, X.; Zhao, X.; Zhao, C.; Chen, Y.; Li, Z. J. Org. Chem., 2004, 69, 899.

[40] Sarkar, D; Venkateswaran, R. Tetrahedron Lett., 2011 52, 3232.

[41] Sajiki, H; Kuno, H; Hirota, K. Tetrahedron Lett., 1995, 38, 399.

[42] Mandal, P; McMurry, J. J. Org. Chem., 2007, 72, 6599.

[43] Nakhi, M.; Shafiqur-Rahman, S.; Archana, R.; Kishore, G.; Seerapu, K.; Kumar, D.;Haldar, M. *Bioorg. Med. Chem. Lett.*, **2013**, *23*, 4195.

[44] Khalife, R.; Hodroj, M.; Fakhoury, R; Rizk, S. Planta Med., 2016, 82, 312.

[45] Phelps, M.; Sparreboom, A. J. Clin. Pharmacol., 2014, 32, 2287.

[46] Pommier, Y.; Leo, E.; Zhang, H.; Marchand, C. Drugs Chem. Biol., 2010, 17, 421.

[47] Hackshaw, A.; Roughton, M.; Forsyth, S.; Monson, K.; Reczko, K.; Sainsbury, R.;Baum, M. J Clin. Oncol., 2011, 29, 1657.

[48] a) Fitzmaurice, C. *JAMA Oncol.*, 2015, *1*, 505. b) Florea, A.; Büsselberg, D. *Cancers*,
2011, *3*, 1351.

[49] Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren,

J.; Bokesch, H.; Kenney, S.; Boyd, M. J. Natl. Cancer Inst., 1990, 82, 1107.

1 Single Pulse with Broadband Decoupling

¹³C NMR (76 MHz, DMSO-*D*₆) δ 169.06, 164.74, 135.96, 133.82, 133.64, 129.99, 127.86, 127.44, 125.47, 123.90, 120.95, 113.52, 59.22, 14.61, 11.63.

[Elemental Composition] Data : Dr-Roberto-Mtz111 Date : 29-Nov-2013 13:34 Sample: 2538 Pirrol-CO-NH2 Note : -luis-velasco Inlet : Direct Ion Mode : FAB+ RT : 0.84 min Scan#: 3 Elements : C 40/0, H 52/0, O 7/0, N 4/1 Mass Tolerance : 1000ppm, 1mmu if m/z > 1Unsaturation (U.S.) : 7.0 - 34.0 Observed m/z Int% 272.1155 21.7 Estimated m/z Error[ppm] U.S. 0 C N

9.0

15

-2.3

н

3

2

16

EtO NH₂

272.1161

Page: 1 -

Instituto de Química, UNAM

Laboratorio de Espectroscopía

LURMN_0307_N-ALQ-CONH2.1.fid Instituto de Quimica, LURMN (BQG) Dr. R. Martinez / R. Chavez Clave: N-ALQ-CONH2 Registro: LURMN_0307 Disolvente: Acetona-d6 Experimento: 1H Bruker AVANCE III HD 700 MHz 24-febrero-2017

¹H NMR (700 MHz, Acetone- d_6) δ 7.83 (d, J = 27.3 Hz, 3H), 7.46 (d, J = 7.4 Hz, 1H), 7.41 (d, J = 7.2 Hz, 2H), 7.39 (s, 2H), 7.14 (s, 1H), 6.77 (s, 1H), 4.22 (t, J = 7.2 Hz, 3H), 4.04 (q, J = 6.9 Hz, 3H), 3.84 (s, 4H), 3.72 (s, 4H), 3.17 (t, J = 7.2 Hz, 3H), 2.02 (s, 4H), 1.11 (t, J = 6.9 Hz, 4H).

LURMN_0307_N-ALQ-CONH2.3.fid Instituto de Quimica, LURMN (BQG) Dr. R. Martinez / R. Chavez Clave: N-ALQ-CONH2 Registro: LURMN_0307 Disolvente: Acetona-d6 Experimento: DEPT 135 Bruker AVANCE III HD 700 MHz 24-febrero-2017 ^{13}C NMR (176 MHz, Acetone) δ 134.15, 127.31, 126.54, 115.69, 114.35, 58.52, 46.80, 37.20, 13.68, 9.25. 13.68 -9.25 ~115.69 ~114.35 -127.31 -126.54 134.15 0 0 NH2 EtO-46.80 37.20 Br 58.52 ОМе ŌМе 160 Т 150 140 130 120 110 100 . 90 80 f1 (ppm) 70 60 50 40 30 20 10 ò

Data:3734 N-alq-CONH2Acquired:11/8/2016 6:02:00 PMSample Name:Operador: Carmen Garcia Javier PerezOperator:AccuTOFDescription:Mass Calibration data:Cal PEG 600Ionization Mode:ESI+Created:11/9/2016 12:11:18 PMHistory:Determine m/z[Peak Detect[Centroid,50,Area];Correct Base[50.0%]];Correct Base[5.0%];Average(MS[1] 1....Created by:AccuTOF

515.11849

Tolerance:2.50(mmu)

Unsaturation Number:0.0 .. 50.0 (Fraction:Both)

EtO

Br

n

. NH₂

516.00

Element:¹²C:0 .. 100, ¹H:0 .. 50, ⁷⁹Br:0 .. 1, ¹⁴N:0 .. 3, ¹⁶O:3 .. 7

Charge number:1

100-

50

Relative Intensity

OMe ÒМе 0 515.00 514.50 515.50 m/z Mass Difference Mass Difference Calc. Mass Possible Formula Mass Intensity **Unsaturation Number** (ppm) (mmu) 0.33 0.65 12C251H2879Br114N216O5 515.11849 83187.21 515.11816 12.5

Page 1 of 1

RCS-FINAL-CONH2.1.fid FINAL-CONH2-PROTON

¹H NMR (300 MHz, Chloroform-*d*) δ 7.98 (s, 1H), 7.77 (s, 1H), 7.69 (s, 1H), 7.44 (s, 2H), 6.73 (s, 1H), 6.28 – 5.59 (m, 2H), 4.13 – 3.99 (m, 4H), 3.92 (s, 6H), 3.00 (t, 2H), 2.17 (s, 3H), 0.87 (t, J = 7.2 Hz, 3H).

RCS-FINAL-CONH2.2.fid FINAL-CONH2-13C

¹³C NMR (75 MHz, CDCl₃) δ 169.48, 166.61, 151.19, 148.12, 147.66, 137.22, 133.84, 132.67, 128.94, 128.02, 127.94, 125.89, 125.36, 125.26, 112.08, 110.54, 109.97, 99.98, 59.92, 56.02, 55.93, 41.24, 29.26, 13.69, 10.33.

,0

EtO[•]

MeO

MeO

NH2

RCS-FINAL-CONH2.3.fid FINAL-CONH2-DEPT135

 $^{13}\mathrm{C}$ NMR (75 MHz, CDCl_3) δ 133.83, 128.93, 128.01, 125.25, 110.48, 59.91, 56.01, 55.93, 41.23, 29.17, 13.69, 10.34.

Data:179 F-CONH2	Acquired:1/27/2017 10:33:17 AM
Sample Name:Dr Martinez Roberto/ Operador:Carmen Garcia-Javier Perez	Operator:AccuTOF
Description:	Mass Calibration data:Cal Peg 600
Ionization Mode:ESI+	Created:1/31/2017 4:03:42 PM
History:Determine m/z[Peak Detect[Centroid,50,Area];Correct Base[50.0%]];Correct Base[5.0%];Average(MS[1] 0	Created by:AccuTOF

Tolerance:3.00(mmu)

Unsaturation Number:0.0 .. 30.0 (Fraction:Both)

Charge number:1 Element:¹²C:0 .. 27, ¹H:0 .. 39, ¹⁴N:2 .. 2, ¹⁶O:0 .. 6

5,6-Dihydropyrrolo[2,1-*a*]isoquinolines as Alternative of New Drugs with Cytotoxic Activity

Rosa María Chávez-Santos,^{*a*} Paul Eduardo Reyes-Gutiérrez,^{*b*} Rubén Omar Torres-Ochoa,^{*a*} María Teresa Ramírez-Apan,^{*a*} and Roberto Martínez^{*,*a*}

^a Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria; 04510, Cd. México, México: and ^bInstitute of Organic Chemistry and Biochemistry, Czech Academy of Sciences; Flemingovo náměstí 542/2, 16610 Prague 6, Czech Republic.

Received May 17, 2017; accepted July 7, 2017; advance publication released online July 22, 2017

In this study, the pyrrolo[2,1-*a*]isoquinolines 4a–n were synthesized in good yields in a three steps synthesis from the corresponding α,β -unsaturated esters starting materials. These compounds were tested on six human cancer cells lines to measure the cytotoxic activity as a function of the electronic properties and aromaticity of the substituent at the C-2 position of the pyrroloisoquinoline. Our results reveal that the cytotoxic activity could be explained in terms of the distribution of electronic density across the ring joined to C-2. Also, this study identified 3-hydroxy (4d) and 3-chloro (4j) derivatives with powerful cytotoxic activities. The IC₅₀ values of these compounds were found to be comparable to those of the commercially available Topote-can, Irinotecan, Etoposide, Tamoxifen, and Cisplatin.

Key words pyrrolo[2,1-a]isoquinoline; synthesis; cytotoxic activity

Cancer is a leading cause of death worldwide, and according to the World Cancer Research Fund International (GLOBOCAN 2012), an estimated 17.1 million new cancer cases and 10.0 million cancer-related deaths will occur in 2020, compared with 15.2 million and 8.9 million, respectively, in 2015.1) The most commonly diagnosed cancers worldwide are cancers of the skin (melanoma), prostate, lung, breast, and colorectum.²⁾ Cancer poses a challenge to researchers searching for potent drugs that are capable of controlling cancer growth while minimizing side effects or the development of drug resistance. Our group is currently engaged in a program aimed at synthesizing novel heterocyclic compounds that inhibit the growth of cancer cells. We recently synthesized the pyrroloisoquinolines I-IV^{3,4} (Table 1) in a threestep protocol, and their cytotoxic activities were tested on six tumor cell lines: PC-3 (human prostatic adenocarcinoma), U-251 (human glioblastoma), K-562 (human chronic myelogenous leukemia), HCT-15 (human colorectal adenocarcinoma), MCF-7 (human mammary adenocarcinoma), and SKLU-1 (human lung adenocarcinoma). The results of this study (Table 1), allowed us to establish preliminary structure-activity relationship (Fig. 1) that revealed the importance of the aromatic substituent at the C-2 position, particularly when the substituent was a *m*-(cyclohexylmethylpiperazinamide)phenyl (I), phenyl (II), or *m*-(amino)phenyl (III), substituent, in combination with an ethyl ester at the C-1 position. Following up on these preliminary structure-activity studies, the present work sought to synthesize the novel pyrroloisoquinolines 4a-c (Fig. 2) to evaluate the effects of modifying the cyclohexylmethylpiperazinyl moiety on the antiproliferative activity. Compounds 4d-k (Fig. 2) were evaluated to determine the role of the phenyl ring substituent on the antiproliferative activity of the compound. Compounds 41-n (Fig. 2) were evaluated to determine the effect of modifying the aromaticity of the C-2 substituent on the antiproliferative activity.

Results and Discussion

Chemistry The synthetic route to compounds 4a-n is depicted in Chart 1. Compounds 4a-n were synthetized via a three-step procedure starting from α . β -unsaturated esters 1a', 1b, 1c, 1d', 1e-j, 1k', 1l', 1m and 1n based in our previous synthetic strategy for synthesis of 5,6-pyrrolo[2,1-a]isoquinolines I-IV with slightly modifications.^{3,4)} According with our synthetic Chart 1, the reaction between the corresponding aromatic aldehydes and ethyl diethylphosphonoacetate, using a Horner-Wadsworth protocol⁵⁾ gave the starting materials 1c, 1d', 1e-j, 1l', 1m, and 1n in excellent yields (Chart 2). The ethyl cinnamates 1a' and 1b were obtained from *m*-iodobenzoic acid or *m*-iodoaniline through a Heck reaction⁶⁾ and a subsequent amidation reaction⁷⁾ with the corresponding cyclic amines (Chart 3). It should be noted that all the α . β -unsaturated esters prepared were obtained exclusively as the (E)-isomers in good yields (78–98%).

Treatment of the electrophilic alkenes 1a'-n with monomethylated *p*-toluenesulfonylmethyl isocyanide (TosMIC), prepared from the commercially available TosMIC under phase transfer conditions according to van Leusen's proto $col^{(8)}$, afforded the 2,3,4-polysubstituted pyrroles 2a'-n in 70–96% vields. The key intermediates 3a'-n were prepared by N-alkylation of the pyrroles 2a'-n using 2-bromo-4,5-dimethoxyphenethyl 4-methylbenzenesulfonate as alkylating agent, which had been prepared from 2-(3,4-dimethoxyphenyl)ethanol in the presence of sodium hydride (NaH) as a base in dry dimethyl sulfoxide (DMSO). Finally, the Nalkyl-pyrroles 3a'-n were cyclized to the corresponding tetrasubstituted-5,6-dihydropyrroloisoquinolines 4a-n using radical oxidative conditions in the presence of tributyltin hydride (n-Bu₃SnH) and dilauroyl peroxide (DLP) in toluene.⁹⁾ The nitro derivative was prepared via a palladium-catalyzed reaction¹⁰⁾ used to obtain the tricyclic framework **4g**. This step was necessary due to the possibility of a denitration reaction in the presence of tributyltin hydride (Chart 1, conditions iii').

Table 1. The IC_{50} Values (mm) of Compounds I to IV in the Six Cancer Cell Lines^{a)}

a) Results are expressed as IC_{50} values in units of μ M±standard error (S.E.). The values indicate the mean calculated from experiments conducted in triplicate.

Fig. 1. Preliminary SAR of Pyrroloisoquinolines I-IV and Designed Compounds

The piperazinyl compound **4a** was prepared from compound **4a**' in ethanol using hydrazine hydrate as a deformylating agent.¹¹⁾ The pyrroloisoquinoline **4d** was prepared after hydrogenolysis of the benzyl ether **4d**'.¹²⁾ The bromo derivative **4k** was synthesized through a Sandmeyer reaction¹³⁾ using the corresponding aniline **4k**' as a precursor. Finally, the *N*-deprotection of pyrrole **4l**' was achieved after applying the reductive conditions described by Sajiko *et al.*,¹⁴⁾ which afforded the pyrroloisoquinoline **4l**.

Cytotoxic Activity and Structure–Activity Relationship (SAR) for Compounds 4a–m We evaluated the effects of modifying the cyclohexylmethylpiperazinyl group in compound I on the antiproliferative activities (Table 2). The removal of the methylcyclohexyl group from our lead compound I decreased the antiproliferative activity of the synthesized compound 4a in all cell lines compared to the activity of the lead compound I [Table 2, Entry 3]. These results suggested that the methylcyclohexyl group is key to the cytotoxic activity. The influence of the piperazine NH group on the activity of 4a was examined by synthesizing the morpholinyl analog 4b. Surprisingly, 4b did not inhibit proliferation of any of the six cancer lines tested (Table 2, Entry 4). On the other hand, the antiproliferative activity of *N*-formylpiperazine 4a' displayed inhibition levels minor to those displayed by 4a. These results could be attributed to effect of the piperazinyl-NH group of 4a on the activity, probably by forming a quaternary ammonium ion *in situ*.

Complete removal of the piperazine ring, in compound 4c (3-CONH₂), provided a level of growth inhibition in all cell lines tested that exceeded the inhibitory activity of 4a. The antiproliferative activity of 4c was better than that of the lead compound I in the MCF-7 cell line but lesser than in tested: PC-3, U-251, K-562, HCT-15 and SKLU-1 cell lines. The last results suggested that the electronic properties of amide group of compound (4c) affected the cytotoxicity to a greater degree than the electronic properties of cyclohexylmethyl-piperazinyl group on I in the MCF-7 cancer cell line.

The electronic effects were further examined by introducing electron-donating groups (4d, 3-OH; 4e, 3-OMe) or electron-withdrawing groups (4f, 3-CN; 4g, 3-NO₂; 4h, 3-CF₃) at the *meta* position of the 2-benzene ring. The majority of these changes significantly increased the inhibitory activity compared to the unsubstituted compound II in all cell lines (Table 3). By the contrary, the inhibitory activity of compounds 4d–h

Fig. 2. Proposed Compounds to Be Synthesized and Evaluated to Determine the Activity Effects of the Structural Modifications Relative to the Activities of Structures I-IV

Reagents and conditions: (i) NaH, CH₃-TosMIC, diethyl ether–DMSO (2:1), 0°C to RT.; (ii) NaH, DMSO, 2-bromo-4,5-dimethoxyphenethyl 4-methylbenzenesulfonate, RT; (iii) *n*-Bu₃SnH, DLP, Toluene, reflux; (iii') Pd(OAc)₂, PPh₃, Et₃N, CH₃CN, reflux; (iv) Hydrazine/EtOH, 60°C; (v, vii) H₂, Pd/C EtOH, RT; (vi) *t*-BuONO, CuBr₂, CH₃CN, 0°C.

Chart 1. Synthetic Route of Compounds 4a-n

was lesser than that the lead compound I in all cell lines, with exception in HCT-15 cell line were compound 4d was twice times more active than I. Interestingly, compound 4d (3-OH) was the most active derivative across three of the six cancer lines (Table 3). The nature of the –OH substituent appeared to increase the activity due to the capacity of the substituent to form hydrogen bonds.

The roles of the electronegativity and/or size of the halogen group on the antiproliferative activity were investigated by synthesizing compounds **4i** (3-F), **4j** (3-Cl), and **4k** (4-Br). As shown in Table 3, the chloro derivative **4j** was the most active of the halogenated compounds on all the cancer cell lines tested but was lesser than that the lead compound **I**, with exception in MCF-7 cell line were compound 4j was six times more active than I. These results suggest that derivatization of C-2-phenyl group with an *m*-chloro substituent is suitable to obtain best anticancer pyrroloisoquinoline compounds.

Finally, the noteworthy results that have been obtained by studying bioisosteric compounds¹⁵⁾ led us to synthesize bioisosters of **II** by changing the benzene ring to a pyrrolo, a furan or a pyridine ring, creating compounds **41**, **4m**, and **4n**, respectively. Our results demonstrate that a bioisosteric modification of the C-2 benzene ring of compound **II**, gives compounds with preserved cytotoxic activity. Moreover, this activity is enhanced by the presence of a furan ring in the PC-3 cell line (compound **4m**). However, the inhibitory activ-

Reagents and conditions: (i) ethyl 2-(diethoxyphosphoryl)acetate, NaH, DMF -60° C. Chart 2. Synthetic Route to the Starting Compounds 1c, 1d', 1e–j, 1l', 1m, and 1n

Reagents and conditions: (i) ethyl acrylate, $Pd(OAc)_2$, PPh_3 , Et_3N , CH_3CN , reflux; (ii) DCC, DCM, amine, RT. Chart 3. Synthetic Route to Compounds 1a', 1b and 1k'

ity of compounds **4l–n** was lesser than that the lead compound **I** in all cell lines tested. Likewise, the data for compounds **II**, **IV**, **4l–m** in three of the six cancer lines U-251, HCT-15 and SKLU-1 indicate that the cytotoxic effect was dependent of the kind of aromaticity of the substituent joined to C-2 (Table 4). These findings confirmed that the cytotoxic activity could be explained in terms of the distribution of electronic density across the ring joined to C-2.

The cytotoxic activities of our most active compounds **4d** and **4j** were compared with those of the commercially available Topotecan,¹⁶ Irinotecan,¹⁷ Etoposide,¹⁸ Tamoxifen,¹⁹ and Cisplatin.²⁰ As shown in Table 3, compound **4d** (3-OH) was ten times more active than cisplatin in the prostate PC-3 cell line, almost two thousand times more active than irinotecan in the colon HCT-15 cell line. In the lung SKLU-1 cell line, compound **4d** (3-OH) was thirty-seven times more active

than topotecan, six hundred forty-one times more active than irinotecan and seventy-six times more active than etoposide. Compound 4j (3-Cl) showed more activity in the U-251(CNS) cell line and leukemia K-562 cell line compared to the reference etoposide. Finally, compound 4j (3-Cl) showed a higher activity than tamoxifen in the breast cancer cell line MCF-7.

Conclusion

Compounds 4a-n were synthetized through a practical synthetic route involving the van Leusen's pyrrole construction protocol and an intramolecular radical oxidative cyclization. The inhibitory activities of compounds 4a-n were evaluated using six cancer cell lines. Our results reveal that the cytotoxic activity could be explained in terms of the distribution of electronic density across the ring joined to C-2. Also, the present study enabled the discovery of the novel 3-hydroxy 4d

Table 2. Effects of Modifying the Cyclohexylmethylpiperazinyl Group on the Antiproliferative Activity^a)

Compd.	R=	PC-3	U-251	K-562	HCT-15	MCF-7	SKLU-1
I		0.16±0.01	0.05±0.00	0.16±0.01	0.02±0.01	5.58±0.04	0.02±0.001
42'	, , , , , , , , , , , , , , , , , , ,	10.20±1.40	11.10±0.70	8.12±0.70	11.40±0.70	8.32±0.90	7.98±0.40
4a	She was a start of the start of	6.39±0.50	6.89±0.80	3.45±0.20	5.23±0.50	7.26±0.60	6.28±0.70
4b		N.A	N.A	N.A	N.A	N.A	N.A
4c		1.23±0.10	1.42±0.10	1.07±0.08	1.34±0.30	1.09±0.10	1.13±0.10

a) Results are expressed as IC_{50} values in units of $\mu m \pm S.E.$ The values indicate the mean calculated from experiments conducted in triplicate. N.A.: this compound was not active. The bold numbers represent the highest activities of the compounds tested.

and 3-chloro **4j** derivatives pyrroloisoquinoline compounds, which displayed excellent cytotoxic activity. The IC_{50} values of these compounds were determined and were found to compare satisfactorily with those of the commercially available drugs topotecan, irinotecan, etoposide, tamoxifen, and cisplatin.

Experimental

Chemistry All reported melting points were measured in open capillaries using a Mel-Temp apparatus. ¹H-NMR spectra were recorded on a Avance III HD 700 MHz Brucker, Avance III HD 500 MHz Brucker, Avance 400 MHz Brucker, 300 MHz Jeol Eclipse, Fourier 300 MHz Brucker spectrometers in deuterated chloroform (CDCl₃) solutions using tetramethylsilane (TMS) as the internal standard (δ =0 ppm), ¹⁴C-NMR spectra were recorded at 75, 100, 125, 150 and 175 MHz on the same instruments. The chemical shifts are reported in the δ scale in parts per million (ppm). The peak patterns are indicated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; brs, broad signal. The coupling constants (J) are reported in Hertz (Hz). IR spectra were obtained on a Magna-IR spectrometer. Mass spectra were recorded on Jeol JEM-AX505HA spectrometer by electronic impact (EI) detection at 70 eV for low-resolution and on a Jeol 5X102A mass spectrometer (Jeol Ltd.) with fast atom bombardment (FAB+) and EI ionization detection for high-resolution measurements.

General Procedure for Synthesizing the Pyrroles 2a'-n A solution containing the alkene (2.6 mmol) and 1-(1-isocyanoethylsulfonyl)-4-methylbenzene (Me-TosMIC) (0.6g, 2.9 mmol) in Et₂O–DMSO (2:1, 15 mL) was added dropwise to a suspension of NaH (0.23 g, 5.7 mmol, 60% dispersion in mineral oil) in dry ether (5 mL). The mixture was stirred at room temperature for 1 h, then H₂O (15 mL) was added dropwise and the product was extracted with EtOAc (3×30 mL). The organic layer was washed with H₂O and brine (3×10 mL), dried with Na₂SO₄, and evaporated *in vacuo*. The residue was purified by flash column chromatography on silica gel to furnish the respective pyrrole. Physical and spectroscopic data of all compounds **2a'–n** are reported in supplementary material.

General Procedure for the Synthesis of the *N*-Alkylpyrroles 3a'-n NaH (0.2 g, 5.7 mmol, 60% dispersion in mineral oil) was added portionwise to a solution of the corresponding pyrrole (2.3 mmol) and 2-bromo-4,5-dimethoxyphenethyl 4-methyl benzenesulfonate (1.9 g, 4.5 mmol) in dry DMSO (10 mL). The mixture was stirred at room temperature for 6h, EtOAc (20 mL) was added, and the solution was washed with water and brine (3×10 mL). The organic layer was dried with Na₂SO₄ and evaporated *in vacuo*. The residue was purified by flash column chromatography on silica gel to furnish the respective *N*-alkylpyrrole. Physical and spectroscopic data of all compounds 3a'-n are reported in supplementary material.

General Procedure for Synthesizing the 5,6-Dihydropyrrolo[2,1-*a*]isoquinolines 4a', 4b, 4c, 4d', 4e, 4f, 4j, 4k', 4l', 4m, 4n To a refluxing solution of the *N*-alkylpyrrole in degassed dry toluene (10 mL), a solution of *n*-Bu₃SnH _

_

Table 3. Effects of *meta*-Substituent on 3-Phenyl Moiety on the Antiproliferative Activity and Comparison with the Activities of Commercially Available Drugs^{a)}

Compd.	R=	PC-3	U-251	K-562	HCT-15	MCF-7	SKLU-1
I	\square	> 0.16±0.01	0.05±0.00	0.16±0.01	0.02±0.01	5.58±0.04	0.02±0.001
	N N	<i>`</i>					
п		18.15±0.60	4.86±0.60	76.78±7.30	0.14±0.06	25.20±2.00	0.59±0.00
ш	} NH₂	21.20±1.20	5.96±0.50	2.50±0.80	0.01±0.00	1.30±0.10	0.10±0.00
4d	ЮН	0.76±0.50	6.12±0.40	5.47±0.70	0.01±0.00	5.72±0.40	0.05±0.01
4e	} − € OMe	3.26±0.10	3.31±0.40	2.65±0.10	0.69±0.05	2.35±0.20	0.77±0.08
4f		3.86±0.10	3.17±0.30	1.98±0.05	2.53±0.20	4.08±0.20	2.93±0.08
4g	₩ NO2	8.26±1.00	12.66±0.50	8.28±1.10	0.10±0.04	13.98±0.70	1.26±0.30
4h	⋛-√ CF3	2.30±0.20	2.50±0.40	3.30±0.20	1.90±0.20	3.10±0.30	1.70±0.10
4 i	₩ F	2.20±0.09	3.10±0.20	1.30±0.20	2.50±0.30	1.70±0.07	3.30±0.10
4j	₩ CI	0.91±0.01	0.37±0.04	0.33±0.03	0.25±0.02	0.88±0.09	0.76±0.07
4k	}-√ Br	22.90±0.90	23.60±0.90	5.20±1.20	5.60±0.20	57.70±1.00	3.60±0.60
Topotecan					0.50±0.05	0.10±0.02	2.00±0.10
Irinotecan					33.09±3.40		34.62±2.30
Etoposide			1.70±0.30	11.30±2.50			4.10±0.60
Tamoxifen						12.80±1.10	
Cisplatin		8.30±0.70	3.30±0.60				

a) Results are expressed as IC_{50} values in units of μ M \pm S.E. The values indicate the mean calculated from experiments conducted in triplicate. The bold numbers represent the highest activities of the compounds tested.

(1.0 mL, 3.7 mmol) in toluene (5 mL) was added dropwise (syringe pump) over 7h. During that time, solid dilauroyl peroxide (DLP) was added portionwise (1.49 g, 3.7 mmol, 0.11 g/30 min). The solvent was removed under reduced pressure and the crude residue was purified by flash column

chromatography on silica gel. Hexane was first added to remove the *n*-Bu₃SnBr, then hexane–EtOAc–Et₃N (70:25:5 to 50:45:5). Physical and spectroscopic data of all compounds 4a'-n are reported in supplementary material.

Cell Culture and Assay for Cytotoxic Activity Cell

Compd.	R=	PC-3	U-251	K-562	HCT-15	MCF-7	SKLU-1
I	N N N	0.16±0.01	0.05±0.00	0.16±0.01	0.02±0.01	5.58±0.04	0.02±0.00
	χ'						
п	}-{\]	18.15±0.60	4.86±0.60	76.78±7.30	0.14±0.06	25.20±2.00	0.59±0.00
IV	J s	8.47±0.23	6.99 ± 0.67	4.07±0.49	0.59±0.05	7.41±0.09	2.13±0.03
41	NH	10.50±0.24	8.99±0.68	6.50±0.67	0.90±0.06	13.60±0.60	5.60±0.05
4m	J o	2.97±0.10	8.67±0.10	8.54±0.50	1.72±0.20	14.70±1.00	6.76±0.09
4n	1-()	21.70±0.20	24.70±1.10	9.10±0.90	14.00±1.40	23.70±1.00	15.60±1.20

Table 4. Effects of Aromaticity of C-2 Substituent on the Antiproliferative Activity^{a)}

a) Results are expressed as IC₅₀ values in units of μ M±S.E. The values indicate the mean calculated from experiments conducted in triplicate. The bold numbers represent the highest activities of the compounds tested.

culture and assay for activity PC-3, U-251, K-562, HCT-15, MFC-7, and SKUL-1, were supplied by The National Cancer Institute (NCI), U.S.A. The cytotoxicity of tumors cells with the test compounds was determined using the protein-binding dye sulforhodamine B (SBR) in microculture assay to measure cell growth.²¹⁾ The cell lines were cultured in RPMI-1640 (Sigma Chemical Co., Ltd., St. Louis, MO, U.S.A.) supplemented with 10% fetal bovine serum which was purchased from Invitrogen Corporation, 2 mM L-glutamine, 10000 units/mL of penicillin G, 10000 µg/mL streptomycin and 0.25 µg/mL Fungizone (Gibco). They were maintained at 37°C in a 5% CO₂ atmosphere with 95% humidity. For the assay, 5104 cell/mL (K-562, MCF-7), 7510 cell/mL (U-251, PC-3) and 10104 cell/mL (SKLU-1, HCT-15), and 100 mL/well of these cells suspension was seeded in a 96-well microtiter plates and incubated to allow for cell attachment. After 24h, $100 \mu L$ of each test compounds and positive substances were added to each well. Later 48h, adherent cell cultures were fixed in situ by adding 50 mL od cold 50% (w/v) trichloroacetic acid (TCA) and incubated for 60 min at 4°C. The supernatant was discarded and the plates were washed three times with water and air dried. Cultured fixed with TCA were stained for 30 min with 100 µL of 0.4% SRB solution. Protein-bounded dye was extraxted with 10mm unbuffered tris base and the optical densities were read on a Microplate Reader Synergy HT (Elx 808, BIOTEK Instruments, Inc., U.S.A.), with a test wavelength of 515 nm. Results were expressed as IC₅₀ values, they were calculated according to the protocol of Monks, were a dose-response curve was plotted for each compound, and the concentration giving 50% inhibition (IC₅₀) was estimated from non-linear regression equations. The IC₅₀ value (mean standard error (S.E.).²²⁾

Acknowledgments This work was supported by Cona-

cyt (Consejo Nacional de Ciencia y Tecnología), Project No. 131295 and Fellowship No. 223141. Financial support from the Dirección General de Asuntos del Personal Académico (DGAPA), Universidad Nacional Autónoma de México (UNAM) (project PAPIIT IN213407) is gratefully acknowledged. We also thank Q. R. Patiño, Dra. N. Esturau, Q. A. Peña, M. C. E. Huerta, Dra. B. Quiroz, and Dra. C. García, I. Q. L. Velasco, Dr. J. Pérez, and Dra. V. Labastida (Centro de Investigaciones Químicas (CIQ), Universidad Autónoma del Estado de Morelos (UAEM)) for technical support. During the experimentation process Rosa María Chávez Santos was a Conacyt Graduate Scholarship holder (No. 223441).

Conflict of Interest The authors declare no conflict of interest.

Supplementary Materials The online version of this article contains supplementary materials

References

- Ferlay J., Soerjomataram I., Dikshit R., Eser S., Mathers C., Rebelo M., Parkin D. M., Forman D., Bray F., *Int. J. Cancer*, **136**, E359– E386 (2015).
- 2) Fitzmaurice C., Dicker D., Pain A., Hamavid H., Moradi-Lakeh M., MacIntyre M. F., Allen C., Hansen G., Woodbrook R., Wolfe C., Hamadeh R. R., Moore A., Werdecker A., Gessner B. D., Te Ao B., McMahon B., Karimkhani C., Yu C., Cooke G. S., Schwebel D. C., Carpenter D. O., Pereira D. M., Nash D., Kazi D. S., De Leo D., Plass D., Ukwaja K. N., Thurston G. D., Yun Jin K., Simard E. P., Mills E., Park E. K., Catalá-López F., deVeber G., Gotay C., Khan G., Hosgood H. D. 3rd, Santos I. S., Leasher J. L., Singh J., Leigh J., Jonas J. B., Sanabria J., Beardsley J., Jacobsen K. H., Takahashi K., Franklin R. C., Ronfani L., Montico M., Naldi L., Tonelli M., Geleijnse J., Petzold M., Shrime M. G., Younis M., Yonemoto N., Breitborde N., Yip P., Pourmalek F., Lotufo P. A., Esteghamati A.,

Hankey G. J., Ali R., Lunevicius R., Malekzadeh R., Dellavalle R., Weintraub R., Lucas R., Hay R., Rojas-Rueda D., Westerman R., Sepanlou S. G., Nolte S., Patten S., Weichenthal S., Abera S. F., Fereshtehnejad S. M., Shiue I., Driscoll T., Vasankari T., Alsharif U., Rahimi-Movaghar V., Vlassov V. V., Marcenes W. S., Mekonnen W., Melaku Y. A., Yano Y., Artaman A., Campos I., MacLachlan J., Mueller U., Kim D., Trillini M., Eshrati B., Williams H. C., Shibuya K., Dandona R., Murthy K., Cowie B., Amare A. T., Antonio C. A., Castañeda-Orjuela C., van Gool C. H., Violante F., Oh I. H., Deribe K., Soreide K., Knibbs L., Kereselidze M., Green M., Cardenas R., Roy N., Tillmann T., Li Y., Krueger H., Monasta L., Dey S., Sheikhbahaei S., Hafezi-Nejad N., Kumar G. A., Sreeramareddy C. T., Dandona L., Wang H., Vollset S. E., Mokdad A., Salomon J. A., Lozano R., Vos T., Forouzanfar M., Lopez A., Murray C., Naghavi M., Global Burden of Disease Cancer Collaboration, JAMA Oncol., 1, 505-527 (2015).

- Reyes-Gutiérrez P. E., Camacho J. R., Ramírez-Apan M. T., Osornio Y. M., Martínez R., Org. Biomol. Chem., 8, 4374–4382 (2010).
- Bauser M., Ergüden J. K., Flubacher D., Naab P., Repp T. H., Stoltefuss J., Burkhardt N., Sewing A., Schauer M., Schlemmer K. H., Weber O., Boyer S. J., Miglarese M., Ying S., Niewöhner U., 3-Substituted pyrrolo[2.1-*a*]isoquinoline derivatives. WO2003014 117A1, PCT/US2002/024877. http://google.com/patents/WO20030141 17A1?cl=en (2003).
- Sano S., Matsumoto T., Nanataki H., Tempaku S., Nakao M., *Tetra*hedron Lett., 55, 6248–6251 (2014).
- 6) Heck R., Metals Rev., 24, 58-63 (1980).
- 7) Valeur E., Bradley M., Chem. Soc. Rev., 38, 606-631 (2009).

- van Leusen A. M., Siderius H., Hoogenboom B. E., van Leusen D., Tetrahedron Lett., 13, 5337–5340 (1972).
- Guerrero M. A., Cruz-Almanza R., Miranda L. D., *Tetrahedron*, 59, 4953–4958 (2003).
- 10) Amatore C., Jutand A., Acc. Chem. Res., 33, 314-321 (2000).
- 11) Xia Y. M., Xia J., Chai C., Chem. Pap., 68, 384-391 (2014).
- Horita K., Yoshioka T., Tanaka T., Oikawa Y., Yonemitsu O., *Tetrahedron*, 42, 3021–3028 (1986).
- 13) Nakhi A., Rahman M. S., Archana S., Kishore R., Seerapu G. P. K., Kumar K. L., Haldar D., Pal M., *Bioorg. Med. Chem. Lett.*, 23, 4195–4205 (2013).
- 14) Sajiki H., Kuno H., Hirota K., Tetrahedron Lett., 38, 399-402 (1997).
- 15) Lima L. M., Barreiro E. J., Curr. Med. Chem., 12, 23-49 (2005).
- 16) Khalife R., Hodroj M., Fakhoury R., Rizk S., Planta Med., 82, 312–321 (2016).
- 17) Phelps M. A., Sparreboom A., J. Clin. Pharmacol., **32**, 2287–2289 (2014).
- 18) Pommier Y., Leo E., Zhang H. L., Marchand C., Chem. Biol., 17, 421–433 (2010).
- Hackshaw A., Roughton M., Forsyth S., Monson K., Reczko K., Sainsbury R., Baum M., J. Clin. Oncol., 29, 1657–1663 (2011).
- 20) Florea A. M., Büsselberg D., Cancers, 3, 1351-1371 (2011).
- 21) Musser J. H., Kreft A., J. Med. Chem., 35, 2501-2524 (1992).
- Monks A., Scudiero D., Skehan P., Shoemaker R., Paull K., Vistica D., Hose C., Langley J., Cronise P., Vaigro-Wolff A., Gray-Goodrich M., Campbell H., Mayo J., Boyd M., *J. Natl. Cancer Inst.*, 83, 757–766 (1991).