

UNIVERSIDAD NACIONAL AUTÓNOMA DE MEXICO

PROGRAMA DE MAESTRÍA Y DOCTORADO EN CIENCIAS QUÍMICAS

ESTUDIO PARA DETERMINACIÓN DEL ORIGEN DEL EFECTO ANOMÉRICO EN EL SEGMENTO S-C-P

TESIS

PARA OPTAR POR EL GRADO DE

MAESTRO EN CIENCIAS

PRESENTA

Q. Gabriel Hernández Fernández

Dr. Gabriel Eduardo Cuevas González Bravo Instituto de Química

CIUDAD DE MÉXICO, NOVIEMBRE 2016

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

PROGRAMA DE MAESTRÍA Y DOCTORADO EN CIENCIAS QUÍMICAS

ESTUDIO PARA DETERMINACIÓN DEL ORIGEN DEL EFECTO ANOMÉRICO EN EL SEGMENTO S-C-P

> T E S I S PARA OPTAR POR EL GRADO DE

MAESTRO EN CIENCIAS

PRESENTA

Q. Gabriel Hernández Fernández

México, Cd. Mx. NOVIEMBRE 2016

Posgrado en Ciencias Químicas

UNAM

JURADO ASIGNADO:

Presidente	Dr. Juan Raúl Álvarez Idaboy
Vocal	Dr. Francisco Miguel Castro Martínez
Vocal	Dr. Adelfo Natalio Reyes Ramírez
Vocal	Dra. Karina Martínez Mayorga
Secretario	Dr. Joaquín Barroso Flores

ASESOR: Dr. Gabriel Eduardo Cuevas González-Bravo

SUSTENTANTE: Gabriel Hernández Fernández

Este trabajo fue realizado en el laboratorio 1-1 del Instituto de Química de la UNAM bajo la asesoría del Dr. Gabriel Eduardo Cuevas González-Bravo, con una beca otorgada por el CONACYT (Número de becario: 335967), con los recursos computacionales brindados por la DGTIC SC16-1-IR-105, así con los recursos económicos para el desarrollo del proyecto por parte de la DGAPA con el apoyo IN-209416 y por parte de CONACYT (apoyo 165614).

AGRADECIMIENTOS

- Al Dr. Gabriel Cuevas por sus comentarios, enseñanzas y lecciones, tanto de química como de la vida.
- A mis maestros durante mis estudios de la maestría, por su tiempo y sus cátedras brindadas.
- A los miembros del jurado por sus oportunos comentarios durante la revisión del trabajo escrito, en especial a la Dra. Karina Martínez Mayorga durante los años en mi estadía en el Instituto de Química.
- A mis compañeros del laboratorio 1-1, siempre divirtiéndonos con comentarios ocurrentes y al mismo tiempo las discusiones que nos ayudan a dar lo mejor de nosotros y a aprender más. A Fabián Cuétara, que desde que llegué al laboratorio me ha orientado y enseñado.
- A mi mejor amigo Eduardo por haberme brindado su ayuda durante este tiempo y sus aportaciones en el ámbito computacional.
- A mi familia que es mi motivación con su amor y apoyo, incluyendo a quién está por integrarse en vida.
- Y por supuesto, a Carolina, mi apoyo y motivación para nunca dejarme derrotar y siempre querer ser el mejor.

A mi familia.

Contenido

R	esumen	. 8
1	Introducción	. 9
2	Generalidades	18
	Estereoquímica	18
	Análisis conformacional del etano	18
	Análisis conformacional del n-butano	19
	Análisis conformacional del ciclohexano	21
	Efecto anomérico ¹³	24
	Modelo electrostático	25
	Modelo estereoelectrónico	26
3	Objetivos	29
	Objetivos	29
4	Resultados y Discusión	30
	Moléculas estudiadas	30
	Metodología	32
	Perfiles energéticos	33
	Análisis de deslocalización electrónica	43
	Análisis NBO	52
	Resultados experimentales	54
	Síntesis del compuesto 16	54
	Síntesis del compuesto 20	57
	Caracterización del compuesto 22	58
5	Conclusiones.	61
6	Referencias	62
7	Anexos	65
	Anexo I. Valores en kcal/mol de la diferencia de energía de los compuestos al variar el ángulo diedro C-X-C-Y.	65
	Anexo II. Valores en Hz de la constante de acoplamiento ${}^{1}J_{C-H}$ de los compuestos al variar el ángulo diedro C-X-C-Y.	69
	Anexo III. Valores de carga en unidades atómicas para el átomo de hidrógeno, H _a , al variar el ángulo diedro C-X-C-Y en los compuestos.	72

Anexo IV. Valores de distancia de enlace C-H en Å, para los compuestos al girar el ángulo diedro C-X-C-Y.	75
Anexo V. Valores en kcal/mol de la diferencia de energía al suprimir de la matriz de Fock la interacción $n_x \rightarrow \sigma^*_{C-Y}$ de los compuestos al variar el ángulo diedro C-X-C-Y.	78
Anexo VI. Datos cristalográficos del compuesto 22	88

Resumen

Con el fin de entender el origen del efecto anomérico en se realizó un estudio de 22 moléculas con el segmento X-C-Y siendo X e Y átomos o grupos electronegativos capaces de dar origen al efecto anomérico. Extrapolando esta información se pretende explicar el efecto anomérico encontrado en compuestos que incluyen el segmento S-C-P.

Se realizaron los cálculos computacionales de los perfiles energéticos de las 22 moléculas, así como de la constante de acoplamiento ${}^{1}J_{C-H}$, la carga del átomo de hidrógeno y la distancia C-H en el segmento anomérico, estos tres últimos con el fin de emplear el efecto Perlin y sus implicaciones para abordar el problema de la deslocalización electrónica, así como el modelo de Orbitales Naturales Enlazantes (NBO por sus siglas en inglés).

Se pretendió hacer el estudio experimentalmente, pero ante las dificultades de síntesis, el estudio se abordó mayoritariamente con estudios computacionales. Los resultados experimentales, aunque no de todos los sistemas deseados también se presentan en este trabajo.

1. Introducción

En 1982, fue reportado por Juaristi, et al.¹, la preferencia por la conformación axial en el 2-difenilfosfinoil-1,3-ditiano, una de las moléculas dónde el efecto anomérico es de los más importantes reportados. Sin embargo, no pudo explicarse con el modelo de doble enlace-no enlace pues los datos estructurales obtenidos no concuerdan con los esperados por el modelo estereoelectrónico, por lo que no debe de existir la interacción $n_S \rightarrow \sigma^*_{C-P}$. Así que se propuso una donación electrónica 3p-3d de parte del átomo de azufre hacia el átomo de fósforo, así como una posible interacción intramolecular entre el grupo fosfinoilo y los protones axiales ubicados en la misma cara de la molécula, lo que implicaría que interacciones débiles controlen la conformación de la molécula [Figura 1].

Figura 1 Estabilización de la conformación axial por interacciones débiles.

Unos años más tarde en 1986, Juaristi et al.² encontraron que la preferencia axial del grupo fosfinoilo en el 2-difenilfosfinoil-1,3-ditiano disminuye sustancialmente al usar ácido trifluoroacético como disolvente. Este disolvente ácido puede llegar a transferir un protón al átomo de oxígeno del grupo fosfinoílo, de modo que la protonación neutraliza algunas interacciones electrostáticas atractivas entre el átomo de oxígeno del grupo fosfinoílo y los átomos de hidrógenos axiales del 2-difenilfosfinoil-1,3-ditiano [Figura 2].

Figura 2 En presencia del ácido trifluoro acético la preferencia axial del grupo fosfinoílo desaparece en el 2-difenilfosfinoil-1,3-ditiano.

Por su parte, Cuevas³ realizó el estudio teórico del equilibrio conformacional del dimetilfosfinoil(metilsulfanil)metano y encontró una preferencia por el arreglo *gauche-gauche* (g,g) debido a una acumulación de carga entre un protón del C-1 y el átomo de oxígeno unido al fósforo [Figura 3].

Figura 3 Equilibrio conformacional del dimetilfosfinoil(metilsufanail)metano.

En el mismo estudio realizado por Cuevas en el año 2000, se encontró que para el 2-dimetilfosfinoil-1,3-ditiano, el confórmero rotacional (o rotámero) más estable es aquel que dirige al átomo de oxígeno apuntando al centro del anillo. Empleando la teoría de Átomos en Moléculas se explicó la estabilidad de esta conformación gracias a un análisis topológico de la densidad electrónica. La razón encontrada es la acumulación de densidad electrónica entre los átomos de hidrógeno unidos a los átomos de carbono C4 y C6 y el átomo de oxígeno del grupo fosfinoílo, lo que se comprueba por la presencia de dos puntos críticos de enlace. Sin embargo, esos puntos críticos encontrados, no tienen las características típicas de un enlace, sino de una interacción débil, esto es debido a que la densidad electrónica encontrada en dichos puntos es veinte veces menor a la que hay en un punto crítico de un enlace C-H [Figura 4].

Figura 4. Presencia de puntos críticos en la conformación axial del 2-dimetilfosfinoil-1,3-ditiano. Los puntos críticos *a* y *b* representan la interacción débil responsable de la conformación axial.

Esta preferencia conformacional conlleva a las preguntas, ¿qué tan general es esta interacción? y ¿se produce con otros sustituyentes oxigenados? En 1992, había sido reportada por Mikolajczyk et al.⁴, la estructura cristalina del ácido 5,5dimetil-1,3-ditian-2-il carboxílico, en la cual se observa que esta molécula adopta la conformación axial, donde el carbonilo del ácido se sitúa sobre el anillo del ditiano, esto le permite a su vez, mantener cerca los átomos de hidrógeno axiales en C4 y C6 con el átomo oxígeno del grupo carbonilo [Figura 5].

Figura 5. Estructura en estado sólido del ácido 5,5-dimetil-1,3-ditian-2-il carboxílico, donde se observan interacciones débiles tipo puente de hidrógeno.

Los autores proponen que la preferencia axial en estado sólido se debía, además de factores estereoelectrónicos causados por el segmento S-C-C(O), a la interacción débil tipo puente de hidrógeno entre los átomos de hidrógeno axiales y el átomo de oxígeno del grupo carbonilo, esta interacción es considerada como puente de hidrógeno debido a la distancia interatómica H-O de 2.564 Å, la cual es menor a la suma de los radios de Van der Waals (2.680 Å) de los átomos en cuestión.

Este estudio motivó a Cuevas y Ríos⁵ a estudiar al 2-benzoil-1,3-ditiano y diferentes derivados, encontrando que en estado sólido la conformación de éstos compuestos se encuentra apuntando preferentemente hacia uno de los átomos de hidrógeno axiales, al igual que lo que ocurre en la estructura reportada por Mikolajczyk et al.

Si bien, las geometrías obtenidas permiten argumentar que una posible interacción débil controla la conformación de estas moléculas, los detractores de esta teoría podrían argumentar que el empaquetamiento cristalino puede ser igualmente responsable al tener esta geometría un menor volumen y por tanto un mejor empaquetamiento cristalino.

Además de estudiar al 2- benzoil-1,3-ditiano, Ríos realizó la síntesis de diferentes compuestos tipo: 2-acil-1,3-ditianos y 2-metil-2-acil-1,3-ditianos sustituidos encontrando siempre una preferencia por el confórmero axial [Figura 6].

Figura 6. Preferencia por el confórmero axial en 1,3-ditianos-2-carbonil sustituídos.

Ríos reportó las estructuras cristalinas de los enantiómeros del 4,6-dimetil-2-benzoil-1,3-ditiano [Figura 7], las estructuras indicaban que las distancias de enlace no correspondían para aplicar el modelo de *"doble enlace/no enlace"* (modelo estereoelectrónico) ya que la distancia C2-C(O) es mayor para el enantiómero ecuatorial (1.534 Å) que la distancia encontrada en el enantiómero axial (1.523 Å), además empleando este modelo para explicar el efecto anomérico, las distancias S-C2 deberían ser menores en el enantiómero axial respecto a las del enantiómero ecuatorial.

Figura 7. Distancias de enlace S-C2 y C2-C(O) de las estructuras cristalinas del 4,6dimetil-2-benzoil-1,3-ditiano.

La técnica de RMN-¹H para determinar la preferencia por los confórmeros con el grupo carbonilo en la posición axial consiste en: Dado que los protones axiales están sometidos a la desprotección que genera el átomo de oxígeno del grupo acilo axial, el desplazamiento químico para el confórmero axial es mayor que para el confórmero ecuatorial. Ahora, dada la relación de intensidades de las

señales correspondientes a cada confórmero y siendo mayor la encontrada a campo bajo se concluyó que la conformación más estable es la axial. Esto es, la conformación axial tiene su origen a una posible interacción tipo puente de hidrógeno CH - - OC. De modo que se demostraba que en solución también existía esta preferencia conformacional, lo que implica que el empaquetamiento cristalino no es la razón de la preferencia conformacional observada.

Posteriormente, en 2007, Cuevas y Rivera Fuentes⁶ estudiaron una serie de compuestos, con el segmento S-C-P con el interés de determinar el origen del efecto anomérico en este segmento, planteando la posible interacción tipo puente de hidrógeno CH - - - OP. Se estudiaron al difenilfosfinoil metilsulfanil metano [Figura 8] y sus correspondientes productos de oxidación, el respectivo sulfóxido y la respectiva sulfona. Es sabido que los átomos de hidrógeno en la posición alfa a un átomo de azufre son ácidos, y mientras mayor sea el grado de oxidación del átomo de azufre serán más ácidos los átomos de hidrógeno, esperando así tener una interacción CH - - OP más fuerte.

Figura 8 Estructura del difenilfosfinoil metilsufanil metano.

Rivera Fuentes obtuvo la estructura cristalina del sulfóxido y la sulfona, en ellas se observó que ambos compuestos se encuentran en conformación *gauche, gauche*. Además, empleando RMN-¹H se encontró un acoplamiento en W entre los protones del grupo metilo y del grupo metileno. Para el sulfóxido se encontró el acoplamiento de ⁴*J*_{H-H} = 0.50 Hz y para la sulfona de ⁴*J*_{H-H} = 0.75 Hz. Esto llevó a pensar que esto estaba ligado a una mayor barrera rotacional por efecto de la interacción tipo puente de hidrógeno CH - - - OP [Figura 9].

 ${}^{4}J_{H-H} = 0,00$ Hz cuando X= Par de electrones, Y= Par de electrones ${}^{4}J_{H-H} = 0,50$ Hz cuando X= O , Y= Par de electrones ${}^{4}J_{H-H} = 0,75$ Hz cuando X= O , Y= O

Figura 9. Constantes de acoplamiento para los compuestos debido a una conformación gauche.

Empleando el método de relajación dipolar desarrollado por Woessner se determinaron las barreras rotacionales del grupo metilo para la serie de compuestos. Asumiendo rotación estocástica y rotación discontinua a partir de los tiempos de relajación *spin-lattice* (T_1) para el grupo metilo y metileno [Tabla 1].

 Tabla 1 Barreras rotacionales (kcal/mol) para los grupos metilo de estos compuestos.

Compuesto	T ₁ (CH ₃)	T ₁ (CH ₂)	Barrera [†]	Barrera [‡]
Sulfuro	4,68	1,25	1,76	1,60
Sulfóxido	1,00	0,49	3,10	2,91
Sulfona	1,60	0,79	3,03	2,84

[†]Modelo estocástico, [‡]modelo de rotación discontinua

Se puede observar que tanto la barrera rotacional del sulfóxido como la de la sulfona son mayores a la del sulfuro y de magnitud similar entre sí. Estos resultados experimentales justifican la idea de una conformación *gauche* debido a una interacción débil CH - - OP, la cual se fortalece por la acidez de los hidrógenos alfa al átomo de azufre.

Recientemente, en 2015, Juaristi y Notorio⁷ realizaron un estudio teórico del efecto anomérico en el segmento S-C-P. En este nuevo estudio, se incluye a la molécula cloruro de trimetil-1,3-ditian-2-il fosfonio, una molécula con un fuerte efecto anomérico, que no presenta la interacción tipo puente de hidrógeno. Este estudio, basado en un análisis NBO, se llevó a cabo bajo un nivel de teoría

B3LYP/6-311+G(d,p) y se utilizó para demostrar que el estudio teórico era capaz de reproducir los resultados experimentales. Si bien, no se obtuvieron los resultados termodinámicos exactos, sí se encontró la misma tendencia observada experimentalmente. Como el análisis NBO permite el estudio de interacciones hiperconjugativas⁸ se observa que la interacción estereoelectrónica $n_S \rightarrow \sigma^*_{C-P}$ para ambas moléculas en la conformación axial y no en la ecuatorial, lo que se atribuye a la interacción estereoelectrónica como la responsable del efecto anomérico en el segmento S-C-P. El estudio también justifica que las distancias de enlace C-P no sean mayores para los confórmeros axiales que en los ecuatoriales, debido a que también existe una interacción del tipo $\sigma_{C(4,6)-S} \rightarrow \sigma^*_{C-P}$ únicamente en el confórmero ecuatorial que debilita y elonga el enlace C-P en estos confórmeros. En conclusión Juaristi atribuye a interacciones hiperconjugativas como la razón de la existencia del efecto anomérico en el segmento S-C-P.

Es importante mencionar que, en 1972, Pople et al⁹ realizaron un análisis computacional sobre la rotación del enlace de etanos 1,2-disustituídos. Modelando al potencial (diferencia de energía) como una función del ángulo diedro. Esta forma del potencial en forma de una expansión de Fourier de 3 términos expresada de la siguiente manera:

$$V(\theta) = \frac{1}{2}V_1(1 - \cos\theta) + \frac{1}{2}V_2(1 - \cos 2\theta) + \frac{1}{2}V_3(1 - \cos 3\theta)$$
(1)

Este análisis permitió a Pople proponer las causas que daban origen a las preferencias conformacionales encontradas para cada molécula. Por ejemplo, para el *n*-Butano obtuvo los parámetros V₁= -3,19 kcal/mol, V₂ = -1.43 kcal/mol y V₃= -3.86 kcal/mol. Concluyendo que el término V₁ es el término afectado por interacciones dipolares, V₂ es el término afectado por la deslocalización de carga. Y finalmente el término V₃ es el término que dominará cuando no existen otras

interacciones y proporciona la preferencia conformacional para los enlaces alternados, por lo que se le atribuye al factor estérico.

La aplicación de esta metodología permitió describir que el efecto anomérico en el segmento O-C-O no tiene un origen estereoeletrónico, por lo que los segmentos de interés en este trabajo se abordarán desde esta perspectiva, con el objetivo de conocer los factores que afectan las preferencias conformacionales.

2. Generalidades

Estereoquímica

Cuando se describe una molécula se parte por establecer su *constitución*, es decir, de cuántos y de qué tipo de átomos está integrada; la *conectividad* entre dichos átomos; la *configuración*, la cual nos describe el arreglo tridimensional de los átomos unidos a un centro quiral; y la *conformación*, que describe el arreglo espacial de las moléculas en un instante determinado, la cual puede pasar desapercibida ya que las moléculas suelen ser representadas en forma bidimensional, sin considerar mucho las consecuencias que supongan el arreglo espacial de los átomos en las moléculas. Sin embargo, la estructura tridimensional de una molécula resulta ser fundamental para determinar sus propiedades. La estereoquímica es la rama de la química que se ocupa de los aspectos tridimensionales de las moléculas.

Análisis conformacional del etano

El etano es una molécula sencilla que permite llevar a cabo un análisis conformacional al contar con sólo dos conformaciones importantes (tomando en cuenta que por definición existe un número infinito de conformaciones), la eclipsada y la alternada, entre las cuales existe una diferencia energética de 2.878 kcal/mol^{10,11} (12 KJ/mol) [Figura 10], ese valor energético es conocido como *barrera rotacional,* ya que al hacer rotar el enlace sencillo carbono-carbono se pasa de una conformación a la otra [Figura 11]. La conformación eclipsada superpone los hidrógenos de los dos grupos metilo en un plano perpendicular al enlace sencillo carbono-carbono, mientras que la conformación alternada tiene a los hidrógenos intercalados para la misma operación¹².

Figura 11. Perfil energético del etano con una barrera rotacional de 2.9 kcal/mol.

Análisis conformacional del n-butano

El *n*-butano es un alcano que une de manera lineal a cuatro átomos de carbonos, por lo que los confórmeros, aunque pueden ser alternados o eclipsados, como en el caso del etano, reciben otros nombres. Por ejemplo, la conformación alternada incluye a los confórmeros *gauche* y *anti*.

Para hacer el análisis conformacional del butano se toma el enlace C2-C3 de la molécula, se ve a través del mismo y se proyectan en un plano perpendicular los grupos metilos y los hidrógenos de los metilenos.

Cuando ambos grupos metilo están sobrepuestos es el confórmero de más alta energía y corresponde a una conformación eclipsada. Cuando se gira 60° el ángulo diedro que forman los cuatro átomos de carbono se tiene la conformación *gauche (synclinal)* que corresponde a una conformación alternada mas no es la de menor energía. Al girar otros 60° (120° en total) el ángulo diedro se tiene una nueva conformación eclipsada, donde cada grupo metilo está sobrepuesto a un hidrógeno del carbono vecino, este confórmero corresponde a una conformación eclipsada sin ser la de mayor energía. Finalmente, al hacer otro giro de 60° (180° en total) sobre el ángulo diedro se llega a otra conformación donde ambos grupos metilos se encuentran lo más alejado posible entre sí, esta conformación es la conformación *anti (o antiperiplanar)* y es la de menor energía.

Figura 12. Perfil energético de la rotación del enlace C2-C3 en el n-Butano.

Análisis conformacional del ciclohexano

El ciclohexano es un compuesto constituido por seis átomos de carbono conectados de tal manera que forman un ciclo (o anillo) y cada átomo de carbono a su vez está unido a dos átomos de hidrógenos. Es interesante este sistema por las múltiples conformaciones que puede adoptar, sin embargo, la forma más común de encontrarla representada es siempre la más estable, la llamada conformación de *silla* (1). El ciclohexano puede existir también en los confórmeros de *media silla* (2), *bote torcido* (3,5) o *bote* (4) [Figura 13].

Figura 13. Confórmeros del ciclohexano y su energía relativa.

A partir de la conformación más estable, la de silla, los átomos de hidrógeno los encontramos uno *axial* al encontrarse perpendicular al anillo y el otro *ecuatorial* al encontrarse en el mismo plano del anillo [Figura 14].

Figura 14. Ciclo hexano en conformación de silla. Los átomos de hidrógeno marcados con rojo son los axiales y los marcados con verde son los ecuatoriales.

La importancia de estos hidrógenos recae en que al ser sustituidos por cualquier grupo de átomos, éste también se denominará como axial o ecuatorial según sea el caso. Por ejemplo, si un átomo de hidrógeno es sustituido por un grupo metilo entonces se tiene al metilciclohexano, el siguiente paso en el estudio conformacional de esta molécula es determinar cuáles son los confórmeros más estables. Para hacer el estudio rápidamente, son despreciados todos los confórmeros que no tengan una conformación de silla en el anillo de ciclohexano (debido a que son energéticamente menos estables), por lo que restan dos confórmeros, el confórmero axial y el ecuatorial. El confórmero axial, así como se ilustra en la figura 15, presenta interacciones estéricas entre los hidrógenos axiales ubicados en la misma cara de la molécula y el grupo metilo.

Figura 15. Repulsión estérica entre el grupo metilo e hidrógenos axiales en el metilciclohexano (conformación axial).

Por otro lado, en el caso del confórmero ecuatorial, no existen interacciones intramoleculares ni restricciones de giro del grupo metilo por lo que tanto el factor entálpico como el entrópico favorecen esta conformación. Dada la flexibilidad del anillo de ciclohexano es posible pasar de un confórmero a otro, esto es conocido como *equilibrio conformacional*. Para el caso particular del ciclohexano, se sabe que sólo el 5% del ciclohexano, a 25 °C, se encuentra como el confórmero "axial", mientras que el 95% se encuentra como el confórmero "ecuatorial" [Figura 16].

Figura 16. Equilibrio conformacional del metilciclohexano.

Efecto anomérico¹³

Con el precedente de que en un ciclohexano saturado el confórmero preferido es el ecuatorial; se presenta el siguiente equilibrio conformacional:

El sistema presentado muestra una preferencia por el confórmero axial. La presencia de un heterociclo alfa sustituido con un grupo electroatractor al heteroátomo dentro del anillo da lugar a esta inversión de la preferencia conformacional, este fenómeno es conocido como *efecto anomérico*; es decir, el efecto anomérico es la tendencia del confórmero axial a ser el preferido sobre el confórmero ecuatorial del sustituyente alfa en sistemas heterocíclicos saturados de seis miembros.

Sin embargo, el efecto anomérico no se limita para heterociclos saturados de seis miembros. Según el Gold Book de la IUPAC, también existe el *efecto anomérico generalizado*, con el cual son consideradas las conformaciones *sinclinales (gauche)* como las preferidas en el sistema X-C-Y-C, donde X y Y son heteroátomos con pares libres de electrones. Por ejemplo, en el clorometoximetano el efecto anomérico generalizado estabiliza la conformación *gauche* [Figura 17].

Figura 17. Equilibrio conformacional del clorometoximetano. Se observa la preferencia por la conformación *gauche* sobre la *anti*.

El efecto anomérico fue reportado por primera vez por J.T. Edward en 1955¹⁴, pero es en 1958 cuando el término "efecto anomérico" es introducido por Raymond U. Lemieux¹⁵. El nombre proviene de llamar carbono anomérico al C1 de una piranosa y que los isómeros que difieren específicamente en la configuración de ese átomo de carbono se llaman anómeros. Desde entonces se han propuesto distintos modelos para explicar el origen de este fenómeno que a continuación se describen.

Modelo electrostático

Edward atribuye la mayor estabilidad de los grupos polares axiales en los anillos de piranosa a la interacción repulsiva entre el dipolo presente en el anillo (originado por la presencia del oxígeno) y el enlace polar que se encuentra paralelo en el confórmero ecuatorial [Figura 18].

Figura 18. Modelo basado en la repulsión dipolo-dipolo.

La validez de este modelo radica en que las interacciones dipolo-dipolo se consideran importantes en cualquier análisis conformacional, ya que existe una preferencia por las conformaciones con el momento dipolar resultante más pequeño. En fase gas, es común encontrar que el rotámero con el momento dipolar más grande es también el de más alta energía¹⁶.

Este efecto es influido por el disolvente, se observa que el efecto es disminuido por una alta constante dieléctica, ya que los disolventes más polares estabilizan al confórmero más polar (ecuatorial); mientras que la preferencia por el confórmero axial aumenta en medios con constante eléctrica pequeña como el tetraclorometano (ϵ =2.2) o el benceno (ϵ =2.3)¹⁷.

Modelo estereoelectrónico

Este modelo también conocido como de Doble enlace-No enlace, a diferencia del modelo basado en interacciones dipolo-dipolo, explica unas características atípicas encontradas en el segmento de las moléculas, estas características son la longitud y el ángulo de enlace, en la siguiente imagen [Figura 19] se ilustra la desviación de la longitud de los enlaces según la posición relativa de cada átomo de cloro.

Figura 19. Información experimental del *cis*-2,3-dicloro-1,4-dioxano.

Este modelo surge del estudio de α-haloéteres¹⁸. En estos compuestos la preferencia por el confórmero axial viene asociada a la elongación del enlace carbono-halógeno y el simultáneo encogimiento del enlace C-O.

En la figura 20 se ilustra a través del 2-clorooxano cómo se explica el modelo estereoelectrónico. El modelo establece que el confórmero axial está estabilizado por la deslocalización electrónica entre un par libre del átomo de oxígeno (localizado antiperiplanar al átomo de cloro) y el orbital de antienlace C-CI.

Figura 20. Ilustración del modelo estereoelectrónico.

Entonces esta interacción ocasiona la elongación del enlace C-CI por la ocupación del orbital de antienlace (σ^*), mientras que la contracción del enlace C-O es causada porque aumenta el carácter de doble enlace. Por otro lado, existe una deformación en el ángulo O-C-CI, el cual aumenta ligeramente respecto al valor normal de un arreglo tetraédrico por el carácter parcial sp² del carbono anomérico. En el lenguaje de la Teoría de Orbitales Moleculares, la forma axial es la conformación energéticamente preferida ya que permite la interacción $n_0 \rightarrow \sigma^*$ que es entre un orbital donador ocupado de alta energía y un orbital receptor desocupado de baja energía [Figura 21].

Para que exista una mejor energía de estabilización debe haber una interacción entre los mejores donadores y los mejores aceptores. En este caso, el mejor donador es el par libre de un carboanión (n_{C} -), seguido por los pares libres de heteroátomos y finalmente por enlaces sigma:

$$n_{C}$$
 > n_{N} > n_{S} > n_{O} > σ_{C-S} > σ_{C-H} > σ_{C-C}

Mientras que los mejores orbitales aceptores son los *p* desocupados por un carbocatión seguido por la siguiente secuencia:

$$\sigma^{*}_{C-CI} > \sigma^{*}_{C-S} > \sigma^{*}_{C-F} > \sigma^{*}_{C-O} > \sigma^{*}_{C-C}$$
, σ^{*}_{C-H}

3. Objetivos

Objetivos

- Se pretende emplear el modelo de ajuste de una serie de Fourier, propuesto por Pople et al., para explicar el origen del efecto anomérico de los sistemas estudiados que lo presentan.
- Utilizar los modelos conocidos y la información recabada en este estudio para proponer un origen del efecto anomérico generalizado.
- Entender el fenómeno de deslocalización electrónica, al cual es históricamente atribuido el origen del efecto anomérico.
- Sintetizar los compuestos con el segmento S-C-P y realizar los estudios de resonancia de tiempos de relajación para calcular las barreras rotacionales a distintas temperaturas.

4. Resultados y Discusión

Moléculas estudiadas

A continuación se enlistan las moléculas estudiadas en este trabajo.

14

Figura 22. Moléculas estudiadas.

Metodología

Todos los cálculos, tanto las optimizaciones completas de la geometría como el cálculo de constantes de acoplamiento y los análisis NBO realizados se efectuaron con el nivel de teoría M06/6-311++G (d,p). De igual manera, para todos los cálculos realizados se utilizó el programa Gaussian 09¹⁹. Por su parte, los cálculos de constantes de acoplamiento se realizaron con el método GIAO y con el nivel de teoría ya mencionado.

Para entender el giro del ángulo diedro de cada caso, en la figura 23 se representa visualmente cómo aumenta el ángulo diedro, para todos los sistemas el sentido del giro es el mismo. Incluso en las gráficas se representan los sistemas según sea el caso.

Figura 6. A partir del sistema 1, sentido en el que el ángulo diedro aumenta y se indica cuál es el átomo de hidrógeno del que se reportan los resultados. Los átomos grises son átomos de carbono, los rojos son átomos de oxígeno, los verdes son átomos de cloro, los blancos son átomos de hidrógeno.

Perfiles energéticos

Se calcularon los perfiles energéticos de las 22 moléculas anteriores en algunas de estas se presenta el efecto anomérico generalizado al encontrar que los mínimos de energía no son en la conformación *anti*, sino la *gauche* como se aprecia en esta sección. Por su parte, las moléculas **1** a **14** se utilizaron por ser sistemas relativamente sencillos, fáciles de modelar y que pueden brindar validez e información general para el estudio del efecto anomérico.

En la gráfica 1 se presenta el perfil energético de los sistemas 1 a 4, los cuales tienen al átomo de cloro en común, el sistema 5 se encuentra separado por su comportamiento completamente distinto a los otros cuatro.

En esta gráfica pueden apreciarse los mínimos de energía en la conformación gauche mientras que la conformación anti en algunos casos es

apenas un ligero mínimo de la superficie de energía potencial. A continuación se encuentran los ajustes de Fourier de los sistemas 1 a 4:

$$V^{1} = 3.757 - 0.591 \cos \theta + 2.619 \cos 2\theta + 1.735 \cos 3\theta$$

$$V^2 = 3.035 - 0.421\cos\theta + 2.038\cos 2\theta + 1.487\cos 3\theta$$

 $V^{3} = 2.909 - 0.708 \cos \theta + 0.585 \cos 2\theta + 1.655 \cos 3\theta - 0.882 \sin \theta + 0.395 \sin 2\theta + 0.311 \sin 3\theta$

 $V^4 = 2.596 - 1.392 \cos \theta + 0.612 \cos 2\theta + 1.630 \cos 3\theta$

Para el sistema 1, se observa en el ajuste un predominio en el término V_2 , correspondiente a la deslocalización electrónica, lo cual se refleja en el enorme tamaño del pozo para la conformación *gauche* respecto al de la conformación *anti*. Para el sistema 2, un sistema análogo al 1 se observa lo mismo, pero para el átomo de azufre parece haber una menor deslocalización electrónica, sin dejar de ser la causa del origen del efecto anomérico para este sistema. El sistema 3, incluye términos de seno en el ajuste para romper la simetría del sistema, sin embargo, el término correspondiente al impedimento estérico (V₃) Parece ser el dominante para que solamente uno, de los dos posibles arreglos *gauche* sea el mínimo de energía. Finalmente, en el sistema 4, que implica una sulfona, se observa una importante disminución del término que correspondientes a la deslocalización electrónica y un gran incremento en los términos correspondientes a los factores dipolares y estéricos para regir a este sistema.

Como puede observarse en la gráfica 2, para el sistema 5, los cambios bruscos en su estructura (formación de sal) no permiten hacer un ajuste representativo,

Gráfica 2. Perfil energético del sistema 5.

Para los sistemas **6** y **7**, el dimetoximetano y (metoxi)(tiometil)metano, se obtuvieron los perfiles energéticos presentados en la gráfica 3 y las ecuaciones de ajuste de series de Fourier ubicadas después de la misma gráfica:

 $V^{6} = 2.865 - 0.504 \cos \theta + 1.629 \cos 2\theta + 1.656 \cos 3\theta$ $V^{7} = 2.561 - 0.505 \cos \theta + 1.628 \cos 2\theta + 1.333 \cos 3\theta$

Ambos sistemas parecen tener un comportamiento muy similar, tanto el factor dipolar como el estereoelectrónico ocasionan que los mínimos de energía coincidan casi por igual, pero la diferencia radica en el factor estérico, lo cual puede explicarse al ser más cortos los enlaces C-O que los C-S resultando valores más altos de energía potencial al encontrarse cerca los átomos, o bien los enlaces eclipsados.

Los sistemas **8**, **9** y **10** que contienen átomos de nitrógeno representaron un reto modelar (debido a la constante inversión priamidal que sufre el átomo de nitrógeno), pero estos sistemas, sin un grupo saliente tan bueno como el átomo de cloro la estructura permanece durante la rotación del ángulo diedro, haciendo el ajuste posible. Vale la pena mencionar, que si bien las moléculas **8** y **9** son análogas, el perfil observado es diferente porque implican distintos giros en el ángulo diedro. Pero esto se hizo con base en los resultados observados con los sistemas **6** y **7**.

Gráfica 4. Perfil energético de los sistemas 8, 9 y 10.

Las ecuaciones de ajuste son:

$$V^{8} = 4.797 - 0.090 \cos \theta + 0.781 \cos 2\theta + 2.775 \cos 3\theta - 0.151 \sin \theta + 1.348 \sin 2\theta$$
$$V^{9} = 2.268 - 0.663 \cos \theta + 0.368 \cos 2\theta + 1.681 \cos 3\theta$$
$$V^{10} = 4.641 + 0.224 \cos \theta - 0.668 \cos 2\theta + 3.646 \cos 3\theta$$

Para la molécula 8, se observa nuevamente como al predominar el factor estérico existe únicamente un mínimo absoluto en la curva. Por otro lado, en el sistema 9, al girar el otro ángulo diedro, si se observan los dos mínimos correspondientes a los dos posibles confórmeros *gauche*, sin ser la deslocalización electrónica el factor predominante. Finalmente, para el sistema 10, con un factor estérico tan dominante, la molécula debe encontrarse de preferencia en un arreglo *anti* a pesar de tener un segmento X-C-X, siendo X un átomo electronegativo.

Por su parte los sistemas **11** a **14** presentan distintos comportamientos, en el sistema **11**, se muestra que la deslocalización electrónica es responsable del efecto anomérico y nuevamente al aumentar el estado de oxidación del azufre y por la presencia de los átomos de oxígeno, los términos estéricos vuelven a ser los más importante en el ajuste. Pero el sistema **14**, tiene al factor dipolar como principal factor de este comportamiento, esto puede deberse a la repulsión entre los pares electrónicos de los átomos de oxígeno tan cercanos en la molécula.

Gráfica 5. Perfiles energéticos de los sistemas 11 a 14.

<i>V</i> ¹¹	=	2.282 -	– 0.013 cc	$s\theta +$	1.721 c	$\cos 2\theta +$	1.080 co	s 3θ
<i>V</i> ¹²	=	2.375 -	– 0.330 cc	$s\theta +$	0.800 c	os 2θ +	1.194 co	s 30
V ¹³	=	1.970 -	– 0.934 cc	$s\theta$ +	0.803 c	os 2 θ +	1.212 со	s 30
V^{14}	=	2.611 -	– 3.449 co	$s\theta$ +	0.781 c	os 2θ +	0.730 co	s 30

A primera vista destaca el caso del compuesto **14** con una gran barrera rotacional entre la conformación *anti* y la *gauche* ocasionada presuntamente por lo argumentado previamente de la repulsión entre los átomos de oxígeno, incluso la conformación es apenas un mínimo en la superficie de energía potencial. Mientras que el sistema **13** con sólo un grupo sulfona la conformación *anti* tiene mayor relevancia sin ser tanto como la conformación *gauche*; y por su parte el sistema **11** tiene igual que el compuesto **14** la conformación *anti* como apenas un mínimo de la superficie de energía potencial.

Los sistemas que contienen S-C-P se agruparon en 2 conjuntos, el primero de los sistemas **15** a **18**, los que tienen al grupo fosfonio, sin la capacidad de donar electrones ni formar interacciones intramoleculares. El segundo conjunto es aquel que contiene a los sistemas **19** a **22**. Del primer conjunto con los sistemas **15** a **18** se presentan los perfiles energéticos en la gráfica 6 y ecuaciones:

 $V^{15} = 2.103 + 1.501 \cos \theta + 0.713 \cos 2\theta + 1.243 \cos 3\theta$

 $V^{16} = 2.833 + 3.327 \cos \theta + 2.296 \cos 2\theta + 0.496 \cos 3\theta$

 $V^{17} = 6.226 + 4.610 \cos \theta + 1.339 \cos 2\theta + 0.582 \cos 3\theta + 3.644 \sin \theta \\ - 0.441 \sin 2\theta$

$$V^{18} = 5.397 + 6.027 \cos \theta + 1.634 \cos 2\theta + 0.830 \cos 3\theta$$

Salta a la vista que los sistemas **15** (hidrocarburo) y **18** (sulfona) tienen su mínimo de energía en 180°, es decir, prefieren la conformación *anti*, en el caso del compuesto **15**, era esperado al no tener un átomo de carbono unido por 2 átomos

electronegativos, mientras que en el caso del compuesto **18**, según el ajuste realizado, es la repulsión por parte de los átomos de oxígeno con los grupos metilos unidos al átomo de fósforo que llevan a la conformación *anti* a ser la más favorecida energéticamente. Por su parte en el compuesto **16**, el ajuste establece que no es la deslocalización electrónica la responsable del efecto anomérico en este compuesto con segmento S-C-P. Siendo en mayor medida el modelo electrostático el que explica el origen del efecto anomérico. Finalmente para el compuesto **17**, en el sulfóxido, ocurre lo mismo que en el sulfuro, siendo mínimo el término para la repulsión electrónica por la relativa longitud de los enlaces C-S y C-P. Y siendo, igualmente, el modelo electrostático el que explica el origen del efectos anomérica el origen del efecto anomérica el origen del efecto anomérico en este compuesto con segmento por la relativa longitud de los enlaces C-S y C-P. Y siendo, igualmente, el modelo electrostático el que explica el origen del efectos fuelta el origen del efecto anomérica el origen del efecto anomérica el origen del efectos fueltas.

Al abordar el segundo conjunto de compuestos con el segmento S-C-P, es decir los compuestos **19** a **22**, son mejor dicho los que tienen el segmento S-C-P(O), la presencia del grupo fosfinoílo en la molécula se presume como responsable del efecto anomérico. Con la finalidad de entender la importancia de esta interacción se hizo girar el grupo metilo del C1 de cada molécula para ver la energía que implica la formación de esta interacción así como se ilustra a continuación:

Figura 7. Equilibrio de formación de interacción tipo puente de hidrógeno.

Gráfica 7. Perfil energético de la rotación del grupo metilo en los compuestos 15 a 18.

Tabla 2. Resumen de en	ergías de formación	de enlace CH-OP F	Para los compuestos 1	15 a 18.
------------------------	---------------------	-------------------	-----------------------	----------

Compuesto	∆E (Kcal/mol)
19	2.75
20	1.66
21	2.82
22	2.35

Es curioso observar que la energía correspondiente al hidrocarburo, el compuesto con los hidrógenos menos ácidos, pero más cercanos al átomo de oxígeno del grupo fosfinoílo tenga un valor mayor a los otros compuestos de la serie. Por otra parte, el sulfuro era esperado que formara una interacción CH-OP más débil que sus productos de oxidación, ya que estos al tener un estado de oxidación mayor, ocasiona que los átomos de hidrógeno alfa sean más ácidos a medida que aumenta el estado de oxidación.

Sin embargo, al comparar al sulfóxido (21) con la sulfona (22), quien forma la interacción más fuerte es el sulfóxido, se propone que la sulfona, con enlaces más cortos no exista la proximidad suficiente entre el hidrógeno de la cadena y el oxígeno del grupo fosfinoílo para crear una interacción tan fuerte como lo hace el sulfóxido.

 $V^{19} = 1.495 + 0.840 \cos \theta + 0.696 \cos 2\theta + 1.304 \cos 3\theta + 0.067 \sin \theta$ $- 0.134 \sin 2\theta - 0.217 \sin 3\theta$

 $V^{20} = 2.354 - 0.553 \cos \theta + 0.918 \cos 2\theta + 0.389 \cos 3\theta + 0.438 \sin \theta$ $+ 0.601 \sin 2\theta + 0.107 \sin 3\theta$

 $V^{21} = 3.445 + 0.830 \cos \theta + 0.743 \cos 2\theta + 0.876 \cos 3\theta + 1.283 \sin \theta$ $+ 0.887 \sin 2\theta - 0.260 \sin 3\theta$

 $V^{22} = 3.717 - 0.044 \cos \theta + 0.407 \cos 2\theta + 0.710 \cos 3\theta + 2.676 \sin \theta$ $+ 0.165 \sin 2\theta - 0.127 \sin 3\theta$

Lo interesante de analizar este caso, es que la curva marca para los cuatro casos un mínimo en común, aquel donde se forma el puente de hidrógeno. En tres de los cuatro casos, el ajuste de Fourier, dicta que es un factor estérico, en este caso se traduce como el puente de hidrógeno no clásico entre CH-OP. El caso del compuesto **20** (sulfuro) vuelve a ser más importante el factor de deslocalización electrónica que los otros.

Análisis de deslocalización electrónica

Las constantes de acoplamiento a un enlace ${}^{1}J_{C-H}$ para enlaces axiales adyacentes al átomo de oxígeno o al átomo de nitrógeno en moléculas con confórmeros de silla son más pequeñas que para los enlaces ecuatoriales²⁰. Esto es conocido como el efecto Perlin²¹. Por lo general, esto ocurre de la deslocalización n_O $\rightarrow \sigma^{*}_{C-H}$. Esta interacción debilita el enlace axial C-H, disminuyendo el valor de la constante ${}^{1}J_{C-H}$.

Para estudiar la deslocalización electrónica, se hizo el cálculo de las constantes de acoplamiento de cada sistema y se presentan aquellas que son del átomo de hidrógeno H_a (aquel con el descriptor *pro-R*). Así como la carga del mismo átomo de hidrógeno y la distancia de enlace C-H. En la Figura 25 se observa cómo la deslocalización electrónica de un par de electrones del átomo de oxígeno del sistema **1** ocasiona que el átomo de hidrógeno H_a tenga una mayor distancia de enlace y una menor carga positiva.

Figura 8. Deslocalización de un par electrónico del átomo de oxígeno en un átomo de hidrógeno.

Para los sistemas que presentan una mayor importancia en la deslocalización electrónica en el origen del efecto anomérico, se espera que exista una correlación entre estas 3 variables. A continuación se presentan los resultados obtenidos agrupados de la misma manera como en la sección anterior.

Para los sistemas **1** a **4** se obtuvieron las gráficas que a continuación se muestran, de acuerdo con el efecto Perlin, para el compuesto **1**, el valor mínimo de la constante de acoplamiento ${}^{1}J_{C-H}$ es a 150°, ángulo en el que debe encontrarse un máximo en la distancia de enlace y un mínimo de carga (máximo de carga negativa). Así mismo para los mínimos encontrados en la gráfica 9, que corresponden a 140° para el compuesto **2**, a 310° para el compuesto **3** y 140° para el compuesto **4**.

Gráfica 10. Carga del átomo de hidrógeno y distancia de enlace C-H del sistema 1 al variar el ángulo diedro.

Gráfica 11. Carga del átomo de hidrógeno y distancia de enlace C-H del sistema **2** al variar el ángulo diedro.

Gráfica 12. Carga del átomo de hidrógeno y distancia de enlace C-H del sistema **3** al variar el ángulo diedro.

Gráfica 13. Carga del átomo de hidrógeno y distancia de enlace C-H del sistema 4 al variar el ángulo diedro.

Retomando de la sección anterior, los sistemas 1 y 2 tienen una importante contribución en la deslocalización electrónica como se observa en las gráficas de carga-distancia, cuando una aumenta la otra disminuye y viceversa; en cambio, en los sistemas 3 y 4 la deslocalización electrónica no hay correlación. Por lo que de aquí en adelante se hace énfasis únicamente en los sistemas donde la deslocalización electrónica es importante (6, 7, 9, 11 y 20). Las gráficas de todos los sistemas no mencionados se encuentran en el Anexo I.

Respecto a los sistemas **1** y **2**, el efecto Perlin indica que donde la constante de acoplamiento, J, es más pequeña (para 1 θ =150° y para 2 θ =140°) no corresponden a los mínimos de carga, ni máximos de distancia de enlace.

A continuación se muestran las gráficas de los resultados obtenidos para los sistemas **6** y **7**, en la gráfica 14 se localizan los mínimos de ${}^{1}J_{C-H}$, los cuales se encuentran a 220° para el compuesto **6** y a 140° para el compuesto **7**.

Gráfica 16. Carga del átomo de hidrógeno y distancia de enlace C-H del sistema **7** al variar el ángulo diedro.

Por su parte, para los sistemas **9** y **11**, se tiene en la gráfica 17, las constantes de acoplamiento ${}^{1}J_{C-H}$ en las que se aprecia que para ambos compuestos hay dos mínimos, Para el compuesto **9** hay un mínimo situado a 140° y el otro a 280°, mientras que para el compuesto **11**, el primer mínimo está situado a 140° y el segundo a 300°.

Gráfica 17. Constantes de acoplamiento ${}^{1}J_{C-H}$ Para los sistemas **9** y **11**.

Gráfica 18. Carga del átomo de hidrógeno y distancia de enlace C-H del sistema 9 al variar el ángulo diedro.

Gráfica 19. Carga del átomo de hidrógeno y distancia de enlace C-H del sistema 11 al variar el ángulo diedro.

Como puede observarse no hay una correlación en los mínimos de constante de acoplamiento con los mínimos de carga y máximos de distancia de enlace. Lo que es fácil notar al ser algo repetitivo es que los compuestos que contienen átomos de azufre tienen el mínimo de la constante de acoplamiento ${}^{1}J_{C-H}$ a 140°, en una conformación casi eclipsada [Figura 26].

Figura 9. Geometría donde ${}^{1}J_{C-H}$ es menor para el compuesto **11**.

En un artículo de Juaristi y Cuevas²² se describe que en el 1,3-ditiano, la constante ${}^{1}J_{C-Hax}$ es menor a la constante ${}^{1}J_{C-Heq}$ por 8 Hz; lo contrario a lo que ocurre en el 1,3-dioxano donde la constante ${}^{1}J_{C-Hax}$ es mayor a la constante ${}^{1}J_{C-Heq}$ por aproximadamente 9 Hz [Figura 27],

Figura 10. Valores de ¹J_{C-H} del 1,3-dioxano y 1,3-ditiano a -90 °C en CD₂Cl₂.

Wolfe et al.²³ proponen que en el caso del 1,3-ditiano es más dominante la interacción $\sigma_{C-S} \rightarrow \sigma^*_{C-H_{eq}}$ que la $n_S \rightarrow \sigma^*_{C-H_{ax}}$. A esta diferencia se le conoce como el efecto Perlin inverso.

Para la serie de compuestos estudiada el mínimo se encuentra en una conformación casi eclipsada, lo que se propone es que existe una débil pero predominante interacción $n_S \rightarrow \sigma^*_{C-Hax}$ sobre la interacción $\sigma_{C-S} \rightarrow \sigma^*_{C-Heq}$.

Análisis NBO

Se muestran las gráficas siguientes la diferencia de energía al suprimir de la matriz de Fock la interacción $n_X \rightarrow \sigma^*_{C-Y}$. En ellas se observa que los sistemas donde X cuenta con 2 pares electrónicos, un par se encuentra como un orbital p, siendo este el más importante brindando deslocalización electrónica. Para los casos donde X cuenta con un solo par electrónico, éste se encuentra muy bien localizado y se vuelve muy importante en la estabilidad que le da a la molécula en la conformación más estable. El compuesto 5 sigue siendo interesante mencionar pues la deslocalización electrónica, lo lleva a una estructura distinta y más estable. En el anexo V se encuentran los resultados de todos los sistemas, tanto los valores como las gráficas correspondientes.

Gráfica 20. Diferencia de energía del compuesto 1 al suprimir las interacciones $n_0 \rightarrow \sigma^*_{C-CI-}$

Gráfica 22. Diferencia de energía del compuesto **5** al suprimir la interacción $n_N \rightarrow \sigma^*_{C-CI-}$

Resultados experimentales

Durante el desarrollo de este proyecto se realizaron las síntesis de los compuestos 16, 17, 18, 20, 21 y 22. Para eso se planteó la siguiente ruta de síntesis:

Síntesis del compuesto 16

Para preparar el compuesto **16** en un matraz en atmósfera de argón se adiciona el compuesto **2**, al cual se le agregó una solución de trimetilfosfina en tetrahidrofurano (THF). Eventualmente la solución se vuelve turbia y un polvo

blanco precipita, esto debido a que la sal formada no es soluble en THF. Dos horas después se toma una alícuota para resonancia, obteniendo los siguientes espectros, el primero es el espectro de RMN-¹H, en el cual se observa un doblete (debido al acoplamiento H-P) que integra para 9 protones, correspondientes al grupo trimetilo, a campo alto se observa otro doblete que integra para 2 protones, correspondientes al grupo metileno y finalmente, un doblete con una constante de acoplamiento muy pequeña, que integra para 3 protones correspondientes al grupo tiometilo.

En el espectro se observa un doblete más que puede corresponder a materia prima, sin embargo el segundo espectro, RMN-³¹P nos da una sola señal correspondiente al producto.

El compuesto al entrar en contacto con el ambiente se empieza a descomponer en una pasta color blanca y de olor desagradable.

Espectro 1. Espectro de RMN-¹H para el compuesto **16**.

Espectro 2. Espectro de RMN-³¹P del compuesto 16.

Síntesis del compuesto 20.

Para realizar la síntesis de este compuesto se utilizó la metodología propuesta, un metal como agente reductor, que transformara al clorometil metil sulfuro en el respectivo anión el cual se adicionaría sobre la clorodifenilfosfina. Sin embargo, tras fracasar en la síntesis usando litio, sodio y magnesio, se intentó hacer una metalación con *n*-butil litio para la posterior adición a la clorodifenilfosfina.

En todos los casos durante el tratamiento de la reacción el compuesto se convierte eventualmente en una pasta café de olor muy desagradable similar al ajo rancio.

Caracterización del compuesto 22

Una muestra del compuesto **22**, estable al ambiente, se purificó y analizó mediante las técnicas de RMN-¹H y difracción de rayos X, a continuación se muestran los resultados obtenidos; la difracción de rayos X demuestra experimentalmente la existencia del efecto anomérico en este compuesto que no puede presentar deslocalización electrónica. En el anexo VI se encuentran los datos cristalográficos del compuesto **22**.

Espectro 3. Espectro de RMN-¹H del compuesto **22** en CDCl₃.

8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 f1 (ppm)

Ilustración 1. Rayos X obtenidos del compuesto 22.

Ilustración 2. Caricatura de los rayos X obtenidos del compuesto 22 en su celda monoclínica.

Ilustración 3. Presencia del efecto anomérico en estado sólido del compuesto **22**. En gris los átomos de carbono, en blanco los de hidrógeno, en amarillo el de azufre, en rojo los de oxígeno y en naranja el de fósforo.

5. Conclusiones

- Empleando la propuesta de Pople se puede determinar el origen del efecto anomérico para varias moléculas donde el efecto puede ser apreciado.
- Se ha determinado que para el segmento S-C-P existen distintos orígenes para el efecto anomérico encontrado. Principalmente la naturaleza del sustituyente de fósforo es el que determina el origen. Para los sistemas con grupo trimetil fosfonio la carga positiva da origen un efecto dipolar; mientras que para los sistemas donde el fósforo representa a un grupo fosfinoílo el origen es una interacción no clásica de puente de hidrógeno CH-OP.
- Al observarse que existe un conflicto con el fenómeno de deslocalización electrónica, al no observarse el efecto Perlin y según el análisis NBO la geometría más estable debería ser para sulfuros y éteres a 90° y no a 60° (conformación *gauche*), cuando el origen del efecto anomérico es estereoelectrónico no es debido a una deslocalización tipo n_X → σ^{*}_{C-Y}. Por lo que debe emplearse otra metodología para explicarse este fenómeno; la Teoría de Átomos en Moléculas será empleada para explicar la deslocalización electrónica.
- Para la síntesis de los compuestos debe realizarse bajo una atmósfera completamente inerte debido a que los compuestos 16 y 20 son lábiles, produciendo subproductos no deseados.

6. Referencias

[1] Juaristi, E.; Valle, L.; Mora-Azueta, C.; Valenzuela, B.A.; Joseph-Nathan, P.; Fredrich, M.F. J. Org. Chem. 1992, 47, 5038-5039.

[2] Juaristi, E., Valle, L., Valenzuela, B. A., Aguilar, M. A. *J. Am. Chem. Soc.* 1986, 108, 2000.

[3] Cuevas, G. J. Am. Chem. Soc. 2000, 122, 692-698.

[4] Mikolajczyk, M.; Gracyk, P.P.; Heteroatom. Chem. 1992, 3, 625.

[5] Ríos-Ruíz, L. Tesis maestría. Instituto de Química. 2001.

[6] Rivera-Fuentes, P. *Tesis de Licenciatura. Facultad de Estudios Superiores Cuautitlan.* 2007.

[7] Juaristi, E., Notorio, R., J. Org. Chem. 80 (5), 2015, 2879-2883.

[8] Alabugin, I.V. J. Org. Chem. 2000, 65, 3910.

[9] Radom, L; Lathan, William, A; Henre, Warren, J; Pople, John A. *J. Am. Chem. Soc*.1973, 95 (3), 693-698.

[10] Pitzer, Russell M. The Barrier to Internal Rotation in Ethane. *Acc. Chem. Res.* 1983, 16, 207-210.

[11] Hirota, Eizi, Saito, Shuji, Endo, Yasuki. Barrier to internal rotation in ethane from the microwave spectrum of CH3CHD2. *J. Chem. Phys.*1979, 71 (3), 1183-1187.

[12] Eyring, H., Grant, D. M., Hecht, H. The Rotational Barrier in Ethane. *J. Chem. Educ.* 1962, 39 (9), 466-468.

[13] Juaristi, E.; Cuevas, G. "Recent Studies of the Anomeric Effect". *Tetrahedron.* 48.24. 5019-5087.1992.

[14] Edward, J.T. Chem. Ind. (London) 1955, 1102.

[15] Lemieux, R.U.; Chü, P. *Abstracts of Papers;* 133rd National Meeting of the American Chemical Society, San Francisco, CA; American Chemical Society: Washington, DC, 1958; 31N.

[16] Wiberg, K. B., Murcko, M. A, *Rotational barriers. 1. 1,2-Dihaloethanes.* J. Phys. Chem. 1987, 91, 3616-1620.

[17] Lemieux, R.U.; Pavia, A.A.; Martin, J.C.; Watanabe, K.A.; Can. J. Chem. 1969, 47, 4427.

[18] Romers, C.; Altona, C.; Buys, H.R.; Havinga, E. Topics Stereochem. 1969, 4, 39.

[19] Gaussian 09, Revision E.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

[20] Cuevas, G.; Martínez-Mayorga, K.; Fernández-Alonso, M.; Jiménez-Barbero, J., Perrin, C. L.; Juaristi, E.; López-Mora, N. *Angew. Chem. Int. Ed.* 2005, 44, 2360-2364.

[21] A.S. Perlin, B. Casu, Tetrahedron Lett. 1969, 10, 2921-2924.

[22] Juaristi, E.; Cuevas, G. Acc. Chem. Res. 2007, 40, 961-970.

[23] (a) Wolfe, S.; Pinto, B. M.; Varma, V.; Leung, R. Y. N. *Can. J. Chem.* **1990**, 68, 1051-1062. (b) Wolfe, S.; Kim, C. K. *Can. J. Chem.* **1991**, 69, 1408-1412.

7. Anexos

Ángulo	1	2	3	4	5	6
0	7.37	6.07	4.27	3.38	13.14	5.63
10	7.03	5.77	4.20	3.16	11.55	5.35
20	6.08	4.96	3.72	2.57	9.07	4.51
30	4.67	3.76	2.89	1.74	6.17	3.28
40	3.02	2.38	1.90	0.87	3.43	1.92
50	1.49	1.13	0.93	0.24	1.26	0.76
60	0.43	0.29	0.25	0.00	0.00	0.09
70	0.00	0.00	0.00	0.25	1.26	0.00
80	0.23	0.25	0.24	0.92	3.43	0.46
90	1.04	1.01	0.98	1.90	6.17	1.29
100	2.22	1.96	1.96	3.01	9.07	2.29
110	3.48	2.96	2.96	4.00	11.55	3.24
120	4.57	3.72	3.65	4.67	13.14	3.95
130	5.25	4.23	3.87	4.87	13.56	4.28
140	5.56	4.42	3.76	4.65	12.97	4.31
150	5.58	4.39	3.35	4.13	11.72	4.08
160	5.43	4.23	2.86	3.54	10.17	3.75
170	5.26	4.10	2.52	3.08	8.64	3.51
180	5.20	4.05	2.48	2.90	7.46	3.41
190	5.26	4.10	2.80	3.08	6.85	3.51
200	5.43	4.23	3.45	3.54	6.83	3.75
210	5.58	4.39	4.31	4.13	7.13	4.08
220	5.56	4.42	5.14	4.65	3.83	4.31
230	5.25	4.23	5.68	4.87	5.76	4.28
240	4.57	3.72	5.84	4.67	6.91	3.95
250	3.48	2.96	5.41	4.00	5.76	3.24
260	2.22	1.96	4.51	3.01	3.83	2.29
270	1.04	1.01	3.38	1.90	7.13	1.29
280	0.23	0.25	2.28	0.92	6.83	0.46
290	0.00	0.00	1.46	0.25	6.85	0.00
300	0.43	0.29	1.07	0.00	7.46	0.09
310	1.49	1.13	1.19	0.24	8.64	0.76
320	3.02	2.38	1.70	0.87	10.17	1.92
330	4.67	3.76	2.47	1.74	11.72	3.28
340	6.08	4.96	3.29	2.57	12.97	4.51
350	7.03	5.77	3.94	3.16	13.56	5.35
360	7.37	6.07	4.27	3.38	13.14	5.63

Anexo I. Valores en kcal/mol de la diferencia de energía de los compuestos al variar el ángulo diedro C-X-C-Y.

Ángulo	7	8	9	10	11	12
0	5.07	8.57	3.72	7.75	4.99	3.88
10	4.79	8.28	3.51	7.41	4.77	3.76
20	4.02	7.31	2.84	6.23	4.10	3.31
30	2.93	6.14	1.86	4.55	3.17	2.56
40	1.74	4.62	0.85	2.89	2.12	1.66
50	0.72	3.47	0.16	1.68	1.12	0.85
60	0.10	2.81	0.00	1.31	0.39	0.25
70	0.00	2.80	0.35	2.01	0.00	0.00
80	0.32	3.34	1.11	3.55	0.01	0.08
90	1.00	4.17	2.04	5.47	0.45	0.49
100	1.88	4.94	2.95	7.13	1.16	1.23
110	2.66	5.29	3.61	8.22	1.97	1.97
120	3.28	5.07	4.01	8.41	2.61	2.65
130	3.68	5.29	4.01	7.65	2.98	2.99
140	3.82	4.94	3.63	6.16	3.13	2.99
150	3.79	4.17	3.01	4.18	3.11	2.76
160	3.63	3.34	2.36	2.18	3.03	2.45
170	3.48	2.80	1.87	0.64	2.98	2.21
180	3.45	2.81	1.68	0.00	2.95	2.22
190	3.48	3.47	1.87	0.64	2.98	2.42
200	3.63	4.62	2.36	2.18	3.03	2.85
210	3.79	6.14	3.01	4.18	3.11	3.38
220	3.82	7.31	3.63	6.16	3.13	3.95
230	3.68	8.28	4.01	7.65	2.98	4.37
240	3.28	8.57	4.01	8.41	2.61	4.34
250	2.66	7.96	3.61	8.22	1.97	3.85
260	1.88	6.44	2.95	7.13	1.16	3.02
270	1.00	4.42	2.04	5.47	0.45	2.19
280	0.32	2.39	1.11	3.55	0.01	1.52
290	0.00	0.83	0.35	2.01	0.00	1.26
300	0.10	0.00	0.00	1.31	0.39	1.22
310	0.72	0.83	0.16	1.68	1.12	1.49
320	1.74	2.39	0.85	2.89	2.12	1.93
330	2.93	4.42	1.86	4.55	3.17	2.57
340	4.02	6.44	2.84	6.23	4.10	3.18
350	4.79	7.96	3.51	7.41	4.77	3.68
360	5.07	8.57	3.72	7.75	4.99	3.88

Ángulo	13	14	15	16	17	18
0	2.97	0.40	6.07	9.13	13.05	14.18
10	2.76	0.37	5.58	8.74	13.14	13.71
20	2.27	0.21	4.53	7.71	12.74	12.45
30	1.59	0.11	3.40	6.63	12.06	11.18
40	0.89	0.05	2.42	5.53	11.42	9.77
50	0.32	0.02	1.75	4.42	10.79	8.46
60	0.02	0.00	1.42	3.22	10.27	7.13
70	0.00	0.12	1.36	1.94	9.68	5.67
80	0.31	0.53	1.32	0.87	9.03	4.43
90	0.96	1.43	1.31	0.18	8.34	3.51
100	1.84	2.67	1.57	0.00	7.96	2.89
110	2.76	3.83	1.90	0.23	7.70	2.65
120	3.39	4.93	2.23	0.68	7.46	2.56
130	3.63	5.66	2.16	1.08	7.00	2.25
140	3.51	5.95	1.81	1.22	6.27	1.70
150	3.18	5.98	1.24	1.19	5.16	1.07
160	2.83	6.03	0.62	1.15	4.03	0.47
170	2.53	5.93	0.15	1.08	2.92	0.15
180	2.38	5.92	0.00	1.07	2.09	0.00
190	2.53	5.93	0.15	1.08	1.42	0.15
200	2.83	6.03	0.62	1.15	1.06	0.47
210	3.18	5.98	1.24	1.19	1.03	1.07
220	3.51	5.95	1.81	1.22	0.98	1.70
230	3.63	5.66	2.16	1.08	0.80	2.25
240	3.39	4.93	2.23	0.68	0.35	2.56
250	2.76	3.83	1.90	0.23	0.00	2.65
260	1.84	2.67	1.57	0.00	0.08	2.89
270	0.96	1.43	1.31	0.18	0.79	3.51
280	0.31	0.53	1.32	0.87	2.06	4.43
290	0.00	0.12	1.36	1.94	3.46	5.67
300	0.02	0.00	1.42	3.22	5.00	7.13
310	0.32	0.02	1.75	4.42	6.36	8.46
320	0.89	0.05	2.42	5.53	7.73	9.77
330	1.59	0.11	3.40	6.63	9.16	11.18
340	2.27	0.21	4.53	7.71	10.61	12.45
350	2.76	0.37	5.58	8.74	12.08	13.71
360	2.97	0.40	6.07	9.13	13.05	14.18

Ángulo	19	20	21	22
0	3.03	4.70	5.21	3.95
10	3.17	5.05	5.58	3.50
20	3.18	5.18	5.74	2.69
30	3.06	5.14	5.78	1.73
40	2.85	5.50	5.85	0.96
50	2.62	5.96	5.39	0.23
60	2.50	5.71	4.90	-0.09
70	2.50	5.48	4.13	-0.03
80	1.62	5.23	3.79	-0.02
90	1.24	5.31	3.95	0.39
100	1.31	5.68	4.12	1.04
110	1.76	6.34	3.82	1.67
120	2.42	7.01	3.75	1.98
130	3.15	6.52	3.78	1.80
140	3.23	5.87	3.69	1.24
150	3.32	5.18	3.23	0.55
160	3.37	4.63	2.54	-0.05
170	3.30	4.05	1.99	-0.38
180	3.26	3.67	1.84	-0.43
190	3.33	2.37	2.36	-0.20
200	3.32	2.77	3.43	0.31
210	3.40	2.57	3.58	0.82
220	3.43	2.63	3.68	1.26
230	3.37	2.65	3.66	1.60
240	3.08	2.34	3.50	1.48
250	2.42	1.83	3.03	0.89
260	1.58	1.18	1.91	0.32
270	0.73	0.42	0.83	0.12
280	0.08	0.00	0.12	-0.09
290	0.06	0.08	0.00	-0.23
300	0.43	0.47	0.47	-0.10
310	0.77	0.94	1.54	0.48
320	1.19	1.63	3.22	1.33
330	1.78	2.40	4.16	2.38
340	2.15	3.25	4.55	3.31
350	2.73	4.09	4.82	4.00
360	3.03	4.70	5.21	3.95

Ángulo	1	2	3	4	5	6
0	189.152	177.158	174.508	178.950	184.924	167.630
10	187.232	178.226	175.795	178.904	184.662	170.292
20	185.631	178.786	177.189	178.509	184.353	172.627
30	184.239	179.630	178.170	178.086	184.051	173.906
40	183.968	179.922	179.168	177.723	184.043	174.484
50	183.279	180.775	179.484	177.681	184.651	174.140
60	182.983	180.936	179.693	176.413	184.942	173.270
70	182.565	180.654	179.671	175.532	181.289	172.562
80	181.828	180.119	178.890	174.665	179.162	171.742
90	180.373	178.688	178.792	173.644	176.208	170.826
100	178.431	176.930	178.588	172.372	172.174	170.061
110	176.076	174.344	178.516	170.763	167.866	169.497
120	173.479	172.408	179.789	169.499	163.445	168.936
130	171.440	170.938	180.377	168.792	160.095	168.000
140	170.118	170.436	180.539	168.267	158.285	166.578
150	170.096	170.994	180.600	168.748	158.004	164.667
160	171.356	172.302	180.176	169.872	158.707	162.710
170	173.539	173.941	179.448	171.590	160.369	160.372
180	176.487	175.930	178.309	173.577	163.162	158.272
190	179.992	177.944	176.947	175.612	166.418	156.392
200	183.527	179.837	175.142	177.265	169.877	154.963
210	186.820	181.225	173.849	178.796	174.968	153.757
220	189.958	182.065	173.111	179.602	179.182	153.563
230	192.170	181.969	172.754	179.822	176.417	153.683
240	193.288	180.603	172.763	179.486	180.955	154.691
250	193.959	178.933	172.800	178.507	189.859	155.832
260	194.275	176.687	172.661	177.335	189.816	156.974
270	194.519	174.921	172.316	176.623	168.793	157.676
280	194.875	173.522	171.500	175.983	168.470	158.216
290	195.332	173.158	171.084	176.107	170.455	158.351
300	195.308	173.030	170.101	176.479	173.106	158.200
310	195.347	172.768	169.943	176.928	175.890	158.103
320	194.699	173.451	170.222	177.740	178.350	158.721
330	193.837	173.853	170.713	178.651	180.589	160.004
340	192.328	175.026	172.031	179.101	182.629	162.180
350	190.914	176.169	173.121	179.204	184.414	164.938
360	189.152	177.158	174.508	178.961	184.924	167.630

Anexo II. Valores en Hz de la constante de acoplamiento ${}^{1}J_{C-H}$ de los compuestos al variar el ángulo diedro C-X-C-Y.

Ángulo	7	8	9	10	11	12
0	162.929	147.041	156.747	141.281	163.873	161.209
10	162.867	144.247	156.523	141.393	163.834	162.728
20	162.634	142.062	156.302	141.556	163.861	164.014
30	162.372	141.118	155.875	140.063	163.806	165.271
40	161.932	140.733	155.547	143.677	163.791	166.022
50	162.060	141.608	154.764	146.128	163.849	166.008
60	162.095	143.346	154.494	148.957	163.965	166.129
70	162.125	145.300	154.263	151.882	164.122	166.165
80	161.795	147.310	154.069	153.797	163.890	166.352
90	161.324	148.861	153.605	154.775	163.687	166.363
100	160.217	149.819	152.601	154.523	162.808	166.755
110	158.930	149.830	152.437	153.355	161.676	167.487
120	158.234	149.829	151.783	151.306	160.439	168.823
130	157.728	149.661	151.080	149.258	159.717	169.301
140	157.505	149.409	150.787	147.220	159.531	169.804
150	157.896	150.291	151.077	146.033	159.942	169.748
160	158.588	152.171	151.962	145.904	160.955	168.798
170	159.911	154.600	153.030	146.724	162.320	167.486
180	160.851	156.954	154.240	148.197	163.610	166.020
190	162.156	159.529	155.717	149.560	165.182	164.456
200	162.253	161.549	156.586	149.734	166.584	162.851
210	164.173	162.707	157.101	148.868	167.495	161.802
220	164.356	162.963	157.074	147.527	167.856	161.186
230	163.901	162.883	156.055	145.811	167.315	160.882
240	162.937	161.861	154.362	143.558	165.960	161.325
250	161.622	160.390	152.535	140.417	164.085	161.568
260	160.056	158.243	151.212	137.802	162.395	161.430
270	158.984	156.949	149.938	135.596	161.044	160.920
280	158.368	156.633	149.746	134.526	160.122	159.871
290	158.260	156.975	150.390	134.801	159.818	158.489
300	158.815	157.723	151.608	136.286	159.817	157.721
310	159.560	157.703	153.027	137.781	160.176	157.038
320	160.529	157.665	154.098	139.299	161.000	156.920
330	161.469	156.518	155.484	139.240	161.805	157.512
340	162.403	154.053	156.115	140.822	162.735	158.300
350	162.910	150.803	156.456	141.164	163.452	159.533
360	162.929	147.041	156.747	141.261	163.873	161.209

Ángulo	13	14	15	16	17	18
0	166.446	165.715	138.462	151.188	149.724	155.368
10	165.839	164.832	136.046	151.039	151.993	153.946
20	165.107	164.282	134.437	151.171	154.207	153.183
30	164.441	164.200	134.547	151.504	155.826	152.473
40	163.968	163.477	135.456	152.207	156.191	152.431
50	163.428	163.340	136.896	152.931	156.580	152.995
60	163.058	162.893	139.007	153.635	155.953	153.001
70	162.421	162.914	140.849	154.591	155.526	153.466
80	161.856	162.913	142.125	155.252	155.815	154.135
90	161.158	162.528	143.637	156.050	156.223	154.161
100	160.562	161.488	144.508	156.013	156.700	154.066
110	159.242	160.380	143.390	155.099	157.984	152.391
120	157.815	158.960	141.922	152.923	160.019	150.832
130	156.830	157.474	140.612	151.564	162.247	149.493
140	156.414	156.662	138.688	150.858	163.985	148.992
150	156.775	156.553	138.780	151.107	164.675	149.447
160	157.921	157.701	139.004	152.325	164.344	151.047
170	159.656	159.582	140.482	154.018	162.838	153.431
180	161.660	161.902	141.826	155.819	160.647	156.131
190	163.765	164.419	143.727	158.105	158.257	158.590
200	165.686	165.891	144.855	160.334	156.126	160.868
210	167.281	167.138	145.576	161.490	154.443	161.772
220	168.078	167.824	145.503	161.562	153.868	162.250
230	168.023	166.963	144.527	161.112	153.896	161.115
240	167.020	165.339	142.443	158.984	154.606	159.146
250	165.397	163.575	140.836	156.702	155.627	156.948
260	164.298	161.909	139.746	154.160	155.509	155.195
270	163.304	161.051	139.141	151.951	154.620	154.215
280	162.781	160.998	138.908	150.700	153.332	154.040
290	162.905	161.762	139.909	150.556	151.843	154.892
300	163.405	162.696	141.066	150.278	150.343	156.369
310	164.194	163.535	142.063	150.671	149.214	157.596
320	165.096	164.302	142.808	151.075	148.705	158.516
330	166.049	165.180	143.123	151.484	147.861	158.774
340	166.701	165.861	142.600	151.758	148.354	158.541
350	166.829	166.229	140.946	151.854	148.604	157.298
360	166.446	165.715	138.463	151.188	149.724	155.369
Ángulo	1	2	3	4	5	6
--------	-------	-------	-------	-------	-------	-------
0	0.172	0.206	0.237	0.239	0.191	0.125
10	0.168	0.203	0.237	0.237	0.191	0.119
20	0.164	0.202	0.235	0.235	0.191	0.115
30	0.161	0.201	0.232	0.233	0.192	0.113
40	0.160	0.201	0.229	0.232	0.194	0.111
50	0.159	0.203	0.225	0.231	0.196	0.111
60	0.160	0.204	0.222	0.230	0.197	0.112
70	0.161	0.206	0.219	0.229	0.200	0.113
80	0.163	0.208	0.217	0.228	0.199	0.115
90	0.165	0.210	0.215	0.226	0.198	0.116
100	0.166	0.211	0.214	0.224	0.195	0.118
110	0.167	0.211	0.213	0.222	0.190	0.118
120	0.168	0.211	0.211	0.220	0.184	0.118
130	0.167	0.209	0.211	0.219	0.177	0.117
140	0.165	0.207	0.210	0.219	0.171	0.115
150	0.163	0.205	0.211	0.219	0.167	0.114
160	0.162	0.203	0.211	0.221	0.165	0.113
170	0.162	0.202	0.211	0.223	0.165	0.113
180	0.163	0.201	0.211	0.226	0.167	0.113
190	0.165	0.202	0.212	0.229	0.170	0.115
200	0.167	0.203	0.212	0.232	0.174	0.118
210	0.170	0.204	0.212	0.235	0.180	0.121
220	0.173	0.206	0.212	0.237	0.188	0.124
230	0.176	0.208	0.211	0.239	0.184	0.127
240	0.179	0.211	0.211	0.241	0.198	0.130
250	0.183	0.214	0.211	0.242	0.199	0.134
260	0.186	0.217	0.212	0.243	0.199	0.138
270	0.189	0.220	0.215	0.244	0.197	0.141
280	0.191	0.221	0.218	0.244	0.198	0.143
290	0.192	0.222	0.222	0.245	0.198	0.145
300	0.192	0.222	0.225	0.245	0.198	0.146
310	0.191	0.221	0.228	0.245	0.198	0.146
320	0.189	0.219	0.231	0.245	0.197	0.144
330	0.186	0.217	0.233	0.244	0.195	0.141
340	0.182	0.213	0.235	0.243	0.194	0.136
350	0.177	0.210	0.237	0.241	0.192	0.130
360	0.172	0.206	0.237	0.239	0.191	0.125

Anexo III. Valores de carga en unidades atómicas para el átomo de hidrógeno, H_a, al variar el ángulo diedro C-X-C-Y en los compuestos.

Ángulo	7	8	9	10	11	12
0	0.160	0.133	0.191	0.172	0.203	0.210
10	0.157	0.125	0.188	0.168	0.200	0.212
20	0.155	0.119	0.186	0.162	0.198	0.214
30	0.155	0.116	0.185	0.157	0.197	0.217
40	0.156	0.114	0.186	0.152	0.197	0.219
50	0.158	0.115	0.187	0.148	0.198	0.221
60	0.160	0.117	0.189	0.145	0.199	0.223
70	0.161	0.120	0.190	0.145	0.201	0.225
80	0.163	0.125	0.192	0.146	0.203	0.227
90	0.164	0.130	0.193	0.150	0.205	0.229
100	0.165	0.136	0.194	0.156	0.206	0.231
110	0.165	0.142	0.194	0.163	0.207	0.232
120	0.163	0.147	0.194	0.169	0.206	0.234
130	0.161	0.143	0.192	0.175	0.205	0.234
140	0.159	0.147	0.190	0.178	0.203	0.233
150	0.157	0.149	0.188	0.181	0.201	0.230
160	0.155	0.150	0.186	0.182	0.200	0.226
170	0.155	0.151	0.185	0.182	0.198	0.221
180	0.154	0.151	0.185	0.181	0.198	0.217
190	0.155	0.152	0.185	0.180	0.198	0.212
200	0.157	0.151	0.187	0.179	0.199	0.209
210	0.158	0.149	0.188	0.178	0.200	0.207
220	0.160	0.146	0.190	0.178	0.201	0.205
230	0.163	0.144	0.193	0.178	0.203	0.205
240	0.165	0.142	0.196	0.178	0.206	0.206
250	0.168	0.142	0.199	0.180	0.208	0.207
260	0.171	0.144	0.201	0.181	0.211	0.209
270	0.174	0.146	0.203	0.181	0.214	0.210
280	0.176	0.148	0.204	0.181	0.216	0.211
290	0.177	0.151	0.205	0.181	0.217	0.211
300	0.177	0.154	0.205	0.180	0.218	0.210
310	0.176	0.155	0.204	0.180	0.218	0.210
320	0.174	0.155	0.203	0.179	0.216	0.210
330	0.171	0.153	0.201	0.179	0.214	0.210
340	0.168	0.148	0.198	0.178	0.210	0.209
350	0.163	0.142	0.194	0.176	0.207	0.210
360	0.160	0.133	0.191	0.173	0.203	0.210

Ángulo	13	14	15	16	17	18
0	0.237	0.261	0.253	0.259	0.263	0.289
10	0.235	0.259	0.251	0.255	0.265	0.286
20	0.233	0.257	0.249	0.252	0.267	0.284
30	0.231	0.255	0.247	0.250	0.269	0.281
40	0.230	0.253	0.247	0.249	0.271	0.279
50	0.228	0.251	0.246	0.249	0.273	0.277
60	0.227	0.250	0.247	0.250	0.275	0.276
70	0.226	0.249	0.249	0.253	0.277	0.275
80	0.225	0.248	0.250	0.256	0.280	0.275
90	0.223	0.246	0.252	0.259	0.283	0.275
100	0.222	0.245	0.253	0.262	0.286	0.274
110	0.220	0.244	0.253	0.264	0.288	0.273
120	0.219	0.242	0.253	0.263	0.290	0.271
130	0.218	0.241	0.251	0.261	0.290	0.270
140	0.218	0.240	0.249	0.259	0.288	0.269
150	0.218	0.240	0.249	0.256	0.285	0.268
160	0.219	0.241	0.248	0.254	0.280	0.269
170	0.221	0.242	0.249	0.253	0.275	0.270
180	0.224	0.246	0.250	0.251	0.270	0.272
190	0.227	0.249	0.252	0.251	0.266	0.275
200	0.230	0.252	0.254	0.252	0.263	0.279
210	0.233	0.256	0.256	0.253	0.261	0.282
220	0.235	0.259	0.257	0.254	0.260	0.285
230	0.237	0.261	0.257	0.257	0.260	0.287
240	0.238	0.262	0.257	0.260	0.262	0.290
250	0.239	0.263	0.256	0.264	0.263	0.291
260	0.240	0.263	0.255	0.266	0.265	0.292
270	0.241	0.263	0.254	0.269	0.265	0.293
280	0.241	0.263	0.254	0.270	0.265	0.293
290	0.242	0.264	0.254	0.272	0.264	0.294
300	0.243	0.264	0.255	0.272	0.263	0.294
310	0.243	0.264	0.255	0.273	0.263	0.294
320	0.243	0.264	0.256	0.272	0.263	0.295
330	0.242	0.264	0.256	0.270	0.263	0.294
340	0.241	0.263	0.256	0.267	0.263	0.293
350	0.239	0.262	0.254	0.263	0.263	0.291
360	0.237	0.261	0.253	0.259	0.263	0.289

Ángulo	1	2	3	4	5	6
0	1.09403	1.08993	1.09240	1.09050	1.09339	1.10802
10	1.09536	1.09020	1.09272	1.09040	1.09309	1.10614
20	1.09662	1.09056	1.09322	1.09034	1.09262	1.10431
30	1.09753	1.09100	1.09356	1.09049	1.09235	1.10283
40	1.09809	1.09139	1.09396	1.09090	1.09185	1.10178
50	1.09842	1.09167	1.09391	1.09112	1.09119	1.10147
60	1.09809	1.09180	1.09341	1.09152	1.09025	1.10157
70	1.09745	1.09162	1.09299	1.09174	1.08915	1.10174
80	1.09666	1.09123	1.09242	1.09193	1.08902	1.10245
90	1.09590	1.09080	1.09171	1.09185	1.08935	1.10332
100	1.09523	1.09043	1.09114	1.09195	1.09028	1.10443
110	1.09494	1.09041	1.09091	1.09194	1.09223	1.10568
120	1.09517	1.09047	1.09067	1.09201	1.09516	1.10696
130	1.09604	1.09093	1.09068	1.09210	1.09893	1.10850
140	1.09716	1.09156	1.09089	1.09227	1.10235	1.10975
150	1.09835	1.09223	1.09122	1.09239	1.10489	1.11135
160	1.09918	1.09257	1.09161	1.09253	1.10623	1.11261
170	1.09967	1.09280	1.09208	1.09251	1.10669	1.11363
180	1.09960	1.09276	1.09242	1.09218	1.10585	1.11390
190	1.09919	1.09231	1.09273	1.09203	1.10403	1.11399
200	1.09813	1.09164	1.09269	1.09165	1.10116	1.11356
210	1.09670	1.09085	1.09248	1.09131	1.09622	1.11257
220	1.09534	1.09025	1.09188	1.09084	1.08817	1.11125
230	1.09369	1.08988	1.09139	1.09083	1.08828	1.11055
240	1.09255	1.08953	1.09095	1.09087	1.09431	1.10933
250	1.09137	1.08936	1.09074	1.09108	1.09349	1.10901
260	1.09035	1.08944	1.09061	1.09143	1.09226	1.10933
270	1.08962	1.08950	1.09063	1.09176	1.09022	1.10995
280	1.08909	1.08972	1.09062	1.09195	1.09080	1.11106
290	1.08879	1.08970	1.09067	1.09198	1.09140	1.11213
300	1.08878	1.08979	1.09088	1.09193	1.09215	1.11320
310	1.08896	1.09011	1.09100	1.09190	1.09269	1.11388
320	1.08948	1.09014	1.09134	1.09174	1.09338	1.11396
330	1.09053	1.09014	1.09140	1.09143	1.09384	1.11321
340	1.09156	1.09003	1.09189	1.09094	1.09405	1.11171
350	1.09268	1.08997	1.09188	1.09067	1.09391	1.10999
360	1.09403	1.08993	1.09240	1.09051	1.09339	1.10802

Anexo IV. Valores de distancia de enlace C-H en Å, para los compuestos al girar el ángulo diedro C-X-C-Y.

Ángulo	7	8	9	10	11	12
0	1.10207	1.10859	1.09520	1.10083	1.09484	1.09549
10	1.10246	1.11440	1.09577	1.10337	1.09530	1.09509
20	1.10305	1.11828	1.09634	1.10652	1.09585	1.09473
30	1.10371	1.12056	1.09705	1.10939	1.09640	1.09450
40	1.10421	1.12187	1.09768	1.11176	1.09696	1.09445
50	1.10455	1.12205	1.09837	1.11375	1.09729	1.09462
60	1.10437	1.12113	1.09853	1.11476	1.09743	1.09475
70	1.10405	1.11941	1.09852	1.11470	1.09718	1.09483
80	1.10367	1.11690	1.09832	1.11331	1.09675	1.09483
90	1.10308	1.11400	1.09788	1.11067	1.09606	1.09491
100	1.10271	1.11033	1.09764	1.10668	1.09548	1.09498
110	1.10264	1.10716	1.09706	1.10331	1.09502	1.09510
120	1.10273	1.10523	1.09686	1.10024	1.09503	1.09522
130	1.10325	1.10688	1.09706	1.09836	1.09537	1.09570
140	1.10384	1.10521	1.09771	1.09722	1.09579	1.09614
150	1.10452	1.10468	1.09844	1.09701	1.09639	1.09676
160	1.10499	1.10458	1.09889	1.09740	1.09689	1.09710
170	1.10522	1.10485	1.09913	1.09822	1.09716	1.09735
180	1.10515	1.10517	1.09884	1.09925	1.09725	1.09744
190	1.10469	1.10554	1.09851	1.10045	1.09702	1.09737
200	1.10400	1.10586	1.09778	1.10106	1.09654	1.09715
210	1.10330	1.10686	1.09707	1.10136	1.09597	1.09678
220	1.10266	1.10765	1.09651	1.10124	1.09548	1.09641
230	1.10232	1.10833	1.09624	1.10060	1.09511	1.09597
240	1.10211	1.11031	1.09607	1.10032	1.09488	1.09535
250	1.10207	1.10856	1.09599	1.09997	1.09480	1.09514
260	1.10211	1.10855	1.09616	1.09967	1.09466	1.09529
270	1.10200	1.10825	1.09645	1.09972	1.09467	1.09579
280	1.10208	1.10750	1.09638	1.09963	1.09469	1.09644
290	1.10199	1.10649	1.09622	1.09943	1.09466	1.09744
300	1.10177	1.10385	1.09599	1.09937	1.09473	1.09793
310	1.10154	1.10284	1.09573	1.09914	1.09482	1.09832
320	1.10153	1.10219	1.09536	1.09870	1.09470	1.09812
330	1.10146	1.10221	1.09504	1.09840	1.09460	1.09747
340	1.10141	1.10347	1.09505	1.09850	1.09450	1.09683
350	1.10164	1.10602	1.09518	1.09931	1.09467	1.09612
360	1.10207	1.10859	1.09519	1.10085	1.09484	1.09549

Ángulo	13	14	15	16	17	18
0	1.09406	1.09304	1.09904	1.09844	1.09760	1.09714
10	1.09414	1.09304	1.09994	1.09913	1.09712	1.09720
20	1.09428	1.09306	1.10072	1.09951	1.09658	1.09726
30	1.09459	1.09320	1.10111	1.09998	1.09639	1.09734
40	1.09501	1.09338	1.10114	1.10018	1.09647	1.09738
50	1.09547	1.09346	1.10099	1.10018	1.09659	1.09706
60	1.09566	1.09357	1.10037	1.09983	1.09699	1.09702
70	1.09606	1.09361	1.09983	1.09913	1.09718	1.09673
80	1.09604	1.09350	1.09935	1.09813	1.09721	1.09645
90	1.09598	1.09309	1.09853	1.09694	1.09710	1.09608
100	1.09584	1.09307	1.09827	1.09603	1.09670	1.09585
110	1.09588	1.09291	1.09852	1.09557	1.09658	1.09607
120	1.09607	1.09318	1.09892	1.09593	1.09629	1.09627
130	1.09640	1.09339	1.09974	1.09645	1.09614	1.09660
140	1.09661	1.09379	1.10042	1.09722	1.09620	1.09694
150	1.09677	1.09409	1.10048	1.09793	1.09641	1.09699
160	1.09681	1.09440	1.10061	1.09839	1.09665	1.09671
170	1.09671	1.09404	1.09995	1.09872	1.09701	1.09640
180	1.09637	1.09383	1.09953	1.09872	1.09720	1.09594
190	1.09589	1.09341	1.09862	1.09836	1.09741	1.09549
200	1.09533	1.09315	1.09786	1.09786	1.09750	1.09513
210	1.09481	1.09275	1.09725	1.09727	1.09736	1.09499
220	1.09452	1.09262	1.09687	1.09690	1.09687	1.09490
230	1.09449	1.09268	1.09676	1.09640	1.09633	1.09521
240	1.09472	1.09303	1.09730	1.09633	1.09586	1.09581
250	1.09500	1.09339	1.09774	1.09629	1.09526	1.09648
260	1.09547	1.09383	1.09831	1.09649	1.09526	1.09702
270	1.09586	1.09412	1.09901	1.09670	1.09554	1.09744
280	1.09610	1.09436	1.09923	1.09697	1.09602	1.09776
290	1.09620	1.09425	1.09905	1.09692	1.09675	1.09783
300	1.09621	1.09422	1.09871	1.09691	1.09742	1.09758
310	1.09595	1.09406	1.09826	1.09693	1.09775	1.09734
320	1.09571	1.09398	1.09804	1.09701	1.09789	1.09724
330	1.09529	1.09372	1.09771	1.09707	1.09822	1.09691
340	1.09472	1.09338	1.09779	1.09730	1.09803	1.09682
350	1.09424	1.09315	1.09816	1.09785	1.09792	1.09707
360	1.09406	1.09304	1.09904	1.09844	1.09792	1.09715

Anexo V. Valores en kcal/mol de la diferencia de energía al suprimir de la matriz de Fock la interacción $n_X \rightarrow \sigma^*_{C-Y}$ de los compuestos al variar el ángulo diedro C-X-C-Y.

		1			2	
Ángulo	nS	nP	nS & nP	nS	nP	nS & nP
	ΔE	ΔE	ΔE	ΔE	ΔE	ΔE
•	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)
0	12.654	0.000	12.654	4.433	0.000	4.433
10	6.840	6.392	13.026	4.147	0.708	4.776
20	4.820	9.341	13.982	3.515	2.446	5.748
30	3.541	12.040	15.453	2.876	4.692	7.277
40	2.584	14.777	17.291	2.308	7.094	9.092
50	1.831	17.323	19.134	1.844	9.401	10.961
60	1.222	19.481	20.712	1.442	11.336	12.531
70	0.738	21.018	21.771	1.119	12.789	13.701
80	0.383	21.658	22.051	0.859	13.508	14.193
90	0.148	21.251	21.399	0.620	13.402	13.886
100	0.021	19.817	19.836	0.414	12.429	12.748
110	0.012	17.448	17.463	0.242	10.757	10.942
120	0.148	14.303	14.469	0.110	8.534	8.619
130	0.467	10.862	11.364	0.029	6.226	6.249
140	0.977	7.443	8.466	0.000	4.089	4.090
150	1.715	4.440	6.204	0.013	2.336	2.347
160	2.350	2.040	4.421	0.047	1.047	1.093
170	2.825	0.522	3.357	0.078	0.263	0.340
180	2.979	0.000	2.979	0.095	0.000	0.095
190	2.825	0.522	3.357	0.078	0.263	0.340
200	2.350	2.040	4.421	0.047	1.047	1.093
210	1.715	4.440	6.204	0.013	2.336	2.347
220	0.977	7.443	8.466	0.000	4.089	4.090
230	0.467	10.862	11.364	0.029	6.226	6.249
240	0.148	14.303	14.469	0.110	8.534	8.619
250	0.012	17.448	17.463	0.242	10.757	10.942
260	0.021	19.817	19.836	0.414	12.429	12.748
270	0.148	21.251	21.399	0.620	13.402	13.886
280	0.383	21.658	22.051	0.859	13.508	14.193
290	0.738	21.018	21.771	1.119	12.789	13.701
300	1.222	19.481	20.712	1.442	11.336	12.531
310	1.831	17.323	19.134	1.844	9.401	10.961
320	2.584	14.777	17.291	2.308	7.094	9.092
330	3.541	12.040	15.453	2.876	4.692	7.277
340	4.820	9.341	13.982	3.515	2.446	5.748
350	6.840	6.392	13.026	4.147	0.708	4.776
360	12.654	0.000	12.654	4.433	0.000	4.433

	3	5		6	
Ángulo	nS	nS	nS	nP	nS & nP
0.	ΔΕ	ΔΕ	ΔE	ΔE	ΔE
	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)
0	3.746	5.643	7.665		
10	2.798	10.294	6.910	2.719	9.068
20	1.923	15.374	5.227	5.333	11.684
30	1.195	20.195	3.588	8.643	15.321
40	0.639	24.279	2.359	12.237	19.568
50	0.258	27.338	1.427	15.675	23.678
60	0.049	29.522	0.757	18.700	27.281
70	0.001	27.338		21.036	
80	0.059	24.279		22.288	
90	0.171	20.195		22.492	
100	0.301	15.374		21.563	
110	0.416	10.294		19.605	
120	0.499	5.643	1.688	17.705	25.077
130	0.539	2.367	3.033	14.844	21.666
140	0.509	0.679	4.665	11.793	18.103
150	0.437	0.027	6.364	8.909	14.764
160	0.320	0.181	7.893	6.607	12.181
170	0.188	0.981	8.976	5.155	10.616
180	0.077	2.386	9.347		
190	0.007	4.454	8.976	5.155	10.616
200	0.020	7.498	7.893	6.607	12.181
210	0.135	14.950	6.364	8.909	14.764
220	0.370	29.686	4.665	11.793	18.103
230	0.739	27.927	3.033	14.844	21.666
240	1.254	22.616	1.688	17.705	25.077
250	1.939	27.927		19.605	
260	2.740	29.686		21.563	
270	3.693	14.950		22.492	
280	4.706	7.498		22.288	
290	5.646	4.454		21.036	
300	6.354	2.386	0.757	18.700	27.281
310	6.685	0.981	1.427	15.675	23.678
320	6.688	0.181	2.359	12.237	19.568
330	6.283	0.027	3.588	8.643	15.321
340	5.608	0.679	5.227	5.333	11.684
350	4 739	2,367	6.910	2.719	9.068
330	4.755				

		7		8		9	
Ángulo	nS	nP	nS & nP	nS	nS	nP	nS & nP
U	ΔE (kcal/mol)						
0	1.548	0.000	1.548	2.392	1.350	0.000	1.350
10	1.464	0.400	1.861	0.650	1.326	0.258	1.587
20	1.252	1.508	2.757	0.034	1.259	1.009	2.283
30	1.020	3.134	4.154	0.136	1.089	2.130	3.249
40	0.778	5.034	5.809	0.781	0.886	3.477	4.405
50	0.554	6.959	7.515	1.909	0.685	4.911	5.640
60	0.371	8.714	9.090	3.450	0.496	6.223	6.757
70	0.229	10.081	10.316	5.271	0.348	7.312	7.685
80	0.117	10.885	11.007	7.346	0.214	7.985	8.213
90	0.038	11.027	11.069	9.891	0.101	8.114	8.220
100	0.001	10.489	10.491	12.481	0.027	7.720	7.747
110	0.021	9.316	9.333	13.938	0.001	6.738	6.739
120	0.114	7.697	7.800	13.913	0.045	5.458	5.503
130	0.284	5.878	6.141	13.938	0.159	4.061	4.218
140	0.518	4.078	4.568	12.481	0.328	2.727	3.054
150	0.793	2.448	3.214	9.891	0.518	1.582	2.098
160	1.047	1.143	2.174	7.346	0.693	0.714	1.406
170	1.243	0.296	1.535	5.271	0.813	0.180	0.993
180	1.235	0.000	1.235	3.450	0.849	0.000	0.849
190	1.243	0.296	1.535	1.909	0.813	0.180	0.993
200	1.047	1.143	2.174	0.781	0.693	0.714	1.406
210	0.793	2.448	3.214	0.136	0.518	1.582	2.098
220	0.518	4.078	4.568	0.034	0.328	2.727	3.054
230	0.284	5.878	6.141	0.650	0.159	4.061	4.218
240	0.114	7.697	7.800	2.392	0.045	5.458	5.503
250	0.021	9.316	9.333	4.933	0.001	6.738	6.739
260	0.001	10.489	10.491	7.802	0.027	7.720	7.747
270	0.038	11.027	11.069	10.477	0.101	8.114	8.220
280	0.117	10.885	11.007	12.670	0.214	7.985	8.213
290	0.229	10.081	10.316	14.283	0.348	7.312	7.685
300	0.371	8.714	9.090	15.324	0.496	6.223	6.757
310	0.554	6.959	7.515	14.283	0.685	4.911	5.640
320	0.778	5.034	5.809	12.670	0.886	3.477	4.405
330	1.020	3.134	4.154	10.477	1.089	2.130	3.249
340	1.252	1.508	2.757	7.802	1.259	1.009	2.283
350	1.464	0.400	1.861	4.933	1.326	0.258	1.587
360	1.548	0.000	1.548	2.392	1.350	0.000	1.350

	10		11		12
Ángulo	nS	nS	nP	nS & nP	nS
J	ΔE	ΔE	ΔE	ΔE	ΔE
•	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)
0	7.358	3.141	0.000	3.141	2.738
10	7.095	3.081	0.334	3.403	2.041
20	6.366	2.767	1.238	3.962	1.405
30	5.317	2.398	2.535	4.859	0.854
40	4.115	1.985	3.971	5.861	0.454
50	2.897	1.591	5.325	6.819	0.194
60	1.755	1.237	6.418	7.568	0.043
70	0.817	0.931	7.119	7.986	0.000
80	0.190	0.680	7.454	8.085	0.035
90	0.003	0.455	7.187	7.613	0.116
100	0.313	0.283	6.686	6.950	0.207
110	1.158	0.151	5.816	5.956	0.294
120	2.498	0.061	4.707	4.764	0.359
130	4.282	0.014	3.499	3.512	0.380
140	6.276	0.000	2.356	2.356	0.365
150	8.143	0.007	1.393	1.399	0.304
160	9.566	0.024	0.641	0.664	0.216
170	10.384	0.039	0.165	0.203	0.124
180	10.703	0.042	0.000	0.042	0.047
190	10.384	0.039	0.165	0.203	0.003
200	9.566	0.024	0.641	0.664	0.018
210	8.143	0.007	1.393	1.399	0.105
220	6.276	0.000	2.356	2.356	0.288
230	4.282	0.014	3.499	3.512	0.571
240	2.498	0.061	4.707	4.764	0.977
250	1.158	0.151	5.816	5.956	1.478
260	0.313	0.283	6.686	6.950	2.083
270	0.003	0.455	7.187	7.613	2.719
280	0.190	0.680	7.454	8.085	3.405
290	0.817	0.931	7.119	7.986	4.191
300	1.755	1.237	6.418	7.568	4.725
310	2.897	1.591	5.325	6.819	5.027
320	4.115	1.985	3.971	5.861	4.988
330	5.317	2.398	2.535	4.859	4.634
340	6.366	2.767	1.238	3.962	4.144
350	7.095	3.081	0.334	3.403	3.487
360	7.358	3.141	0.000	3.141	2.738

		16		17
Ángulo	nS	nP	nS & nP	nS
U	ΔE	ΔE	ΔE	ΔE
0	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)
10	4.961	0.000	4.961	3.600
10	4.751	0.323	5.053	3.168
20	4.162	1.183	5.276	2.410
30	3.619	2.433	5.930	1.771
40	3.025	3.739	5.611	1.265
50	2.476	4.926	7.241	0.801
00 70	1.972	5.796	7.621	0.471
70	1.513	6.184	7.578	0.225
80	1.123	6.180	7.217	0.067
90	0.785	5.703	6.432	0.006
100	0.536	4.963	5.468	0.003
110	0.352	4.085	4.423	0.019
120	0.224	3.279	3.497	0.036
130	0.130	2.396	2.525	0.046
140	0.073	1.635	1.709	0.043
150	0.039	0.947	0.987	0.031
160	0.018	0.434	0.454	0.014
170	0.010	0.111	0.121	0.002
180	0.009	0.000	0.009	0.004
190	0.010	0.111	0.121	0.036
200	0.018	0.434	0.454	0.114
210	0.039	0.947	0.987	0.256
220	0.073	1.635	1.709	0.484
230	0.130	2.396	2.525	0.776
240	0.224	3.279	3.497	1.141
250	0.352	4.085	4.423	1.595
260	0.536	4.963	5.468	2.158
270	0.785	5.703	6.432	2.873
280	1.123	6.180	7.217	3.644
290	1.513	6.184	7.578	4.412
300	1.972	5.796	7.621	4.872
310	2.476	4.926	7.241	5.066
320	3.025	3.739	6.611	4.983
330	3.619	2.433	5.930	4.982
340	4.162	1.183	5.276	4.661
350	4.751	0.323	5.053	4.377
360	4.961	0.000	4.961	3.856

Gráfica 23. Diferencia de energía del compuesto **2** al suprimir las interacciones $n_s \rightarrow \sigma^*_{C-CI}$.

Gráfica 24. Diferencia de energía del compuesto **6** al suprimir las interacciones $n_0 \rightarrow \sigma^*_{C-0}$.

Gráfica 25. Diferencia de energía del compuesto 7 al suprimir las interacciones $n_s \rightarrow \sigma^*_{c-o}$.

Gráfica 26. Diferencia de energía del compuesto **8** al suprimir las interacciones $n_N \rightarrow \sigma^*_{C-O}$.

Gráfica 27. Diferencia de energía del compuesto **9** al suprimir las interacciones $n_s \rightarrow \sigma^*_{C-N-}$

Gráfica 28. Diferencia de energía del compuesto **10** al suprimir las interacciones $n_N \rightarrow \sigma^*_{C-N}$.

Gráfica 29. Diferencia de energía del compuesto **11** al suprimir las interacciones $n_s \rightarrow \sigma^*_{C-s}$.

Gráfica 30. Diferencia de energía del compuesto **12** al suprimir las interacciones $n_S \rightarrow \sigma^*_{C-S}$.

Gráfica 31. Diferencia de energía del compuesto **15** al suprimir las interacciones $n_S \rightarrow \sigma^*_{C-P}$.

Gráfica 32. Diferencia de energía del compuesto **16** al suprimir las interacciones $n_S \rightarrow \sigma^*_{C-P}$.

Anexo VI. Datos cristalográficos del compuesto 22.

Bond precision: C-C = 0.0063 A Wavelength=0.71073 a=14.8440(9) b=14.8440(9) c=5.6762(4) Cell: alpha=90 beta=90 gamma=120 298 K Temperature: Calculated Reported Volume 1083.15(18) 1083.15(15) Space group P 32 Hall group P 32 P 32 P 32 Hall group P 32 Moiety formula C14 H15 O3 P S C14 H15 O3 P S Sum formula C14 H15 O3 P S C14 H15 O3 P S Mr 294.29 294.29 Dx,g cm-3 1.354 1.353 Z 3 3 Mu (mm-1) 0.335 0.335 F000 462.0 462.0 F000' 462.87 h,k,lmax 19,19,7 19,19,7 Nref 3330[1665] 3323 0.957,0.971 Tmin, Tmax 0.891,0.971 Tmin' 0.887 Correction method= # Reported T Limits: Tmin=0.891 Tmax=0.971 AbsCorr = MULTI-SCAN Data completeness= 2.00/1.00 Theta(max) = 27.463 R(reflections) = 0.0326(2959) wR2(reflections) = 0.0751(3323) S = 1.024Npar= 173