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Abstract: The synthesis of cyclometalated osmium complexes is usually more complicated than of
other transition metals such as Ni, Pd, Pt, Rh, where cyclometalation reactions readily occur via
direct activation of C–H bonds. It differs also from their ruthenium analogs. Cyclometalation for
osmium usually occurs under more severe conditions, in polar solvents, using specific precursors,
stronger acids, or bases. Such requirements expand reaction mechanisms to electrophilic activation,
transmetalation, and oxidative addition, often involving C–H bond activations. Osmacycles exhibit
specific applications in homogeneous catalysis, photophysics, bioelectrocatalysis and are studied
as anticancer agents. This review describes major synthetic pathways to osmacycles and related
compounds and discusses their practical applications.

Keywords: osmium; cyclometalation; osmium cyclometalated complex; osmacycle; pincer complex;
catalysis; photophysics; anticancer activity

1. Introduction

Osmium is the heaviest and rarest stable element in the earth’s crust, with a concen-
tration of approximately 0.05 part per billion. Perhaps the latter accounts for why the
coordination and organometallic chemistry of osmium are less advanced than that of other
transition metals. Common precursors, such as OsCl3 or M2[OsCl6], are significantly more
expensive than their respective ruthenium precursors. Osmium is often associated with
highly toxic OsO4, widely used as an oxidizing agent in organic chemistry and as a staining
agent in transmission and scanning electron microscopies [1–3]. Fortunately, osmium
chemistry is not limited to its oxides, and numerous coordination, organometallic, and
cluster compounds have been prepared, though their chemistry is not as deeply explored as
that of ruthenium [4]. The osmium chemistry was not extensively reviewed in the literature.
The first review was written by Griffith in 1987 [5]. Some osmium compounds were also
compiled in Gmelin Handbuch der Anorganischen Chemie in the 1980s [6]. In the 2011 edition
of the Encyclopedia of Inorganic Chemistry, two articles were devoted to coordination and
organometallic chemistry of osmium [7,8]. To our knowledge, the chemistry of cyclometa-
lated osmium species was not specifically reviewed, in contrast with the extended coverage
of the chemistry of other metalacycles in the last several decades [9–23].

This review attempts to fill the existing gap in covering the cyclometalation chemistry
of osmium compounds as they are presented in Figure 1 with M = Os. The metal is usually
σ-bonded to a carbon atom and coordinated to E, where E is generally N, P, O, S, As, Se.
Undoubtedly, the impact of Michel Pfeffer’s work on the development of cyclometalation
reactions was fundamental, and many of his publications, first on palladium then on
ruthenium metalacycles, set the path for countless publications [24–27].
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Figure 1. Chelate coordination and cyclometalated complexes. 
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complexes. The oxidation states vary from 0 to VIII, though more common are oxidation 
states between II to IV [4]. Osmium forms stronger metal-metal and metal-carbon bonds, 
and hence osmium complexes are generally less active catalysts than analogous ruthe-
nium species. Many osmium complexes are made via different or more difficult routes 
than their ruthenium analogs. Publications on osmacycles started to grow after 2000, prior 
to which they were nearly nonexistent. Their number is considerably lower than the num-
ber of reports on ruthenacycles (Figure 2). 
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benzo[h]quinoline. A mixture of mononuclear isomers 1 was obtained in low yields after 

Figure 1. Chelate coordination and cyclometalated complexes.

2. Historical Background

Ruthenium and osmium belong to group 8 metals, and they frequently form similar
complexes. The oxidation states vary from 0 to VIII, though more common are oxidation
states between II to IV [4]. Osmium forms stronger metal-metal and metal-carbon bonds,
and hence osmium complexes are generally less active catalysts than analogous ruthenium
species. Many osmium complexes are made via different or more difficult routes than their
ruthenium analogs. Publications on osmacycles started to grow after 2000, prior to which
they were nearly nonexistent. Their number is considerably lower than the number of
reports on ruthenacycles (Figure 2).
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osmium, metalacycle AND osmium or ruthenacycle, ruthenium AND cyclometalated, cyclometallated AND ruthenium,
cyclometalated AND ruthenium, metalacycle AND ruthenium).

The first osmacycle prepared by Bruce in 1973 was made from [Os3(CO)12] and
benzo[h]quinoline. A mixture of mononuclear isomers 1 was obtained in low yields after
230 h at reflux in light petroleum [28]. In 1981, Jameson described cyclometalated formazan
derivatives of osmium 2 [29]. Desrosiers prepared a hydride osmium–phosphine complex
3 by intramolecular C−H activation in 1986 [30]. Cyclometalated piano-stool derivative
of benzoic acid 4 was reported by Kisenyl in 1987 [31]. Later, mononuclear and dinuclear
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pincer osmium complexes 5, 6, dinuclear Ru-Os cyclometalated derivative 7 [32,33], cationic
mononuclear osma(II)cycle with PPh3 8 [34], and osmacycle 9 from polyquinoline [35]
were obtained. Structures of compound 5–11 are shown in Table 1.

Table 1. First osmacycles prepared between 1973 and 1997.

Precursor Cyclometalated Ligand Osmacycle Ref.

[Os3(CO)12]
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Table 1. Cont.

Precursor Cyclometalated Ligand Osmacycle Ref.

[Os(tterpy)(O)2(OH)(NO3)]
prepared from K2[Os(O)2(OH)4]
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[35]

* tterpy = 4′-(4-tolyl)-2,2′:6′,2”-terpyridine.

3. Main Precursors
3.1. [OsX2(PR3)3]

Complexes [OsX2(PR3)3], a family of 16 electron osmium(II) precursors, are widely
used for the synthesis of osmacycles. Among them, [OsBr2(PPh3)3] is particularly valuable.

3.1.1. mono-Osmacycles

Chakravorty synthesized phenolate osmium complex 11 from 2,6-diformyl-4
-methylphenol and [OsBr2(PPh3)3] [36]. The authors proposed the oxidative addition
of the aldehyde, followed by decarbonylation, to form an unstable OsIV intermediate.
Subsequent reductive elimination of HX yields the cyclometalated complex [36]. Related
[OsBr(C~O)(PPh3)2(CO)] complexes 12 were similarly prepared, and the substitution of
bromide generated cationic species 13 (Figure 3) [37].
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The mechanism of cyclometalation of 2-vinylpyridine by [MCl2(PPh3)3] (M = Ru, Os)
was explored theoretically for the ruthenium case [38]. The lower reactivity of osmium
allowed to isolate several intermediates proposed. The reaction of [OsCl2(PPh3)3] with an
excess of 2-vinylpyridine in the presence of Cs2CO3 and NaBF4 results in cyclometalation
of the ligand with liberation of PPh3 to produce 14. The cationic complex 15 is formed via
substitution of the chloride by a second equivalent of 2-vinylpyridine in presence of NaBF4.
In the absence of NaBF4, the neutral cyclometalated complex 14 generates isomers 16 and
17 (Figure 4) [38].
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3.1.2. Pincer and bis-Cyclometalated Complexes

[OsBr2(PPh3)3] reacts with 2-(2′,6′-dimethylphenylazo)-4-methylphenol in refluxing
2-methoxiethanol in the presence of NEt3 to produce osmium(III) complex 24. The authors
consider a coordination of the ligand to osmium(II) in a tridentate C~N~O fashion, followed
by the oxidation to osmium(III) in 18 (Figure 5). Thereafter, the loss of HX affords a carbene
species 19. In the presence of water, the carbene intermediate could transform into the
OsH-C=O fragment (22) after elimination of H2 in intermediate 21. A posterior reductive
elimination of a half equivalent of hydrogen from 22, followed by the migration of a
CO fragment (23), would produce the final cyclometalated complex [Os(C~N~O)(CO)]
(24) [39].
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Wen and co-workers prepared cyclometalated [Os(P~C~P)Cl(PPh3)] complexes 25
and 26 (Figure 6) [40]. They react with H2 to afford dihydrido species. The corresponding
carbonyl derivatives can also be prepared in the presence of CO [41].
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Figure 6. Synthesis of P~C~P pincer complex from 1,3-(R2PCH2)2C6H4.

The diphosphine {1,3,5-(CH3)3-2,6-(iPr2-PCH2)2C6H} was also reacted
with [OsCl2(PPh3)3]. The metal promotes the cleavage of one C−CH3 bond with lib-
eration of methane (Figure 7). In the presence of H2, dihydride heptacoordinated complex
27 is formed, while [OsH(Cl)(PPh3)3] generates a pentacoordinated complex 28 [41].
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Figure 7. Synthesis of P~C~P pincer complexes by cleavage of a C-C bond.

The N,N’-bis(phosphinomethyl)dihydropermidine-type ligands H2C(NCH2PR2)2C10H6
(R = Cy, Ph) react with [OsCl2(PPh3)3] yielding the P~C~P pincer complexes 29 and 30.
The latter may undergo the second C−H activation to form the corresponding carbenes.
Figure 8 shows the proposed mechanism for the double C−H activation [42].
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Other examples involving C−H activation are shown in Figure 9. Majumder et al.
synthesized osmacycles 36 and 37 from 2-(arylazo)phenols and [OsBr2(PPh3)3] [43], and
Das found an unusual cyclometalation of N-arylbenzohydroxamic acids leading to 38 [44].

Bis-pincer complex 39 was obtained from [OsCl2(PPh3)3] and diphosphine
2,6-(CH2PPh2)2C6H3 at a ligand-to-complex ratio of 3:1 (Route 1 in Figure 10). On the
other hand, the ratio of 1:1 provides mono-pincer complex 25. An exchange of chloride by
triflate affords 40 and a subsequent reaction with the second equivalent of the ligand leads
to bis-pincer complex 39 (Route 2 in Figure 10) [45].
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3.1.3. Others Osmacycles

Gong studied the interaction between HC≡CCH(OH)CH=CH2 and [OsCl2(PPh3)3] in
THF leading to η2-allyl alcohol osmacycle complexes, which could further be converted to
osmabenzene, cyclic osmium η2-allene, osmafuran and α,β-unsaturated ketone complexes
in a one-pot reaction [46] (Figure 11). It is worth mentioning that the “donor center” in
such osmacycles is a C=C double bond, narrowly fitting into the definition of a metalacycle.
Nevertheless, the authors classify the complexes as osmacycles. The cyclometalation takes
place through a nucleophilic attack of PPh3 at the coordinated alkyne [47]. This method
results in efficient preparations of conjugated osmacycles in high yields and allows the
synthesis of complexes containing a phosphonium moiety incorporated in the metalacycle.
Osmabenzenes were prepared in a similar way [47]. The η2-alkyne-coordinated alcohol
complex 41 can be transformed under acidic conditions to a η2-coordinated α,β-unsaturated
ketone 42. Additionally, 41 reacted with triphenylphosphine to give 43 in presence of
Bu4NX (X = Cl, Br) with elimination of OH-. The efficient cyclometalation to give 45 with
η2-coordinated allyl alcohol was also performed. Upon thermal treatment, 45 converts
to a mixture of four conjugated osmacycles (42, 46–48) [48]. Osmafuran 49 was prepared
similarly [48] (Figure 11).
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3.2. [OsX2(CO)(PR3)3]

Related precursors [OsX2(CO)(PR3)2] were also explored. The oxidative addition of
the ortho C−H bond of the phenyl group of imine Ph2C=NH to [Os(Cl)(Ph)(PiPr3)2(CO)]
followed by the reductive elimination of benzene and the coordination of the iminic
nitrogen generates osmacycle 50 (Figure 12). The process could be viewed as an unusual
σ-bond metathesis [49].
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Clark et al. studied by X-ray crystallography four cyclometalated osmium com-
plexes (51–55) obtained via the transmetalation reaction between hydride precursors
[OsH(Cl)(CO)(PPh3)3] and organomercurial derivatives of 2-phenylpyridine. A series
of related complexes (56–58) in which the phenylpyridine ligand was modified by elec-
trophilic substitutions was also reported (Figure 13) [50].
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Bennett et al. also showed that the reaction between [Hg(o-C6H4PPh2)2]
and [MH(Cl)(CO)(PPh3)3] (M = Ru, Os) form the corresponding four-membered met-
alacycles 59, elemental mercury and free triphenylphosphine (Figure 14) [51]. It was
suggested that the reaction occurs through the oxidative addition of Hg−Ar to a coordina-
tively unsaturated intermediate generated by the dissociation of PPh3 and the posterior
reductive elimination of ArH and Hg [52].
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3.3. Osmium Hydride Complexes

Esteruelas and coworkers have extensively been working on C−H bond activations
mediated by transition metals. Their results represent an important step in the development
of new synthetic routes through C−H bond activations by osmium. Notably, osmium
hydrides complexes favor high oxidation states (4 and 6) and display a wider range of
stoichiometries and structures than ruthenium derivatives. Osmium hydride complexes
can also exhibit lability of the hydride ligands under thermal conditions [53]. Particularly,
the hexahydride osmium(VI) precursor, [OsH6(PiPr3)2], was widely used to prepare a
variety of osmacycles. For example, this hexahydride osmium complex is capable of
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generating a tetrahydride [OsIVH4(PiPr3)2] species and one hydrogen molecule by thermal
activation [53]. The tetrahydride complex can then coordinate the oxygen atom of the
carbonyl group of an aromatic ketone and subsequently activates C−H or C−F bonds for
the corresponding cyclometalation step [54].

3.3.1. [OsH6(PR3)2]

Studies by NMR revealed that [OsH6(PiPr3)2] reacts with cycloalkyl or phenyl methyl
ketone to form cyclometalated compounds 60, 61 and 62 (Table 2) [49,50,54,55]. The re-
activity of 61 and related complexes will be discussed in Section 4.2. The reaction of
[OsH6(PiPr3)2] with 2-vinylpiridine affords 63, and a secondary C−H bond activation gen-
erates complex 64 [56]. The C(sp3)−H activation occurs when [OsH6(PiPr3)2] reacts with
8-methylquinoline. Activation of the methyl group and elimination of two H2 molecules
gives 65. Experiments with methyl deuterated 8-methylquinoline and DFT calculations
confirmed the mechanism [57].

Table 2. Osmacycles obtained from [OsH6(PiPr3)2].

Cyclometalated Ligand Osmacycle Yield Ref.
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Table 2. Cont.

Cyclometalated Ligand Osmacycle Yield Ref.
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The same hexahydride osmium precursor in the presence of 0.5 eq of 2,6-bis{1-[(4-
methylphenyl)imino]ethyl}pyridine is involved in a double C−H activation of the pyridine
ring producing a dimetalatricyclic system 66 (Table 2). The product was characterized by
an X-ray study and the presence of three fused rings was confirmed [58]. Other bimetallic
osmacycles were prepared from [OsH6(PiPr3)2] by activation of the ortho C−H bond of
N,N’-di- and tetraphenyl bipyridines. Starting from 2-phenylpyridine, compound 67 was
first obtained (Table 2). Using 2,2′-diphenyl-4,4′-bipyridine in 1:3 and 3:1 ratios with respect
to osmium allowed to isolate mononuclear 68 and dinuclear 69 osmacycles, respectively
(Table 2). The corresponding phenyl and anthracenyl derivatives of bipyridine also form
dinuclear osmacycles (70, 71) [59]. Complex [OsH6(PiPr3)2] and 2-azetidinones substituted
at 4-position by an N-heterocycle and in 3-position by a phenoxy group afford correspond-
ing cyclometalated complexes (72, 73). This reaction is associated with the metal-mediated
degradation of the ligand which involves two C−H bond activations and a parallel C−N
and C−C rupture within the four-membered rings [60,61] (Table 2). Double cyclometala-
tion takes place when [OsH6(PiPr3)2] reacts with 2,6-diphenylpyridine to give tridentate
C~N~C pincer compound 74. In the presence of HBF4 the latter can suffer the addition
of one proton at the metalated carbon to form the cationic mono-cyclometalated complex,
which eliminates 2,6-diphenylpyridine in the presence of acetonitrile to generate the cor-
responding coordination derivative. When the ligand is 2-phenoxy-6-phenylpyridine,
a double C−H activation also occurs. Five- and six-membered rings 75 are produced
(Table 2) [62]. Other reactions with [OsH6(PiPr3)2] involve the cyclometalation of azole
ligands by selective C−H bond activation which can discern the coordination of N over
“N−H side” in the ligand (76, 77). Such behavior is also observed with 2-phenylthiazole
and 2-phenylbenzothiazole, where the cyclometalation occurs at the “C−N side” [63]. The
reaction of the hexahydride precursor with benzonitrile in toluene promotes the C−H
activation and the reduction of the triple C≡N bond forming the corresponding imine.
The resulting complex 78 is produced in a 75% yield. The substitution of PiPr3 by PPh3 in
such complexes was also studied [64]. Complex [OsH6(PiPr3)2] can also activate directly
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the 8-position in 2-, 3-, 6- and 7-methylquinolines to obtain corresponding [OsH3{κ2-
C8,N-(quinilinyl)}(PiPr3)2] and [OsH3{κ2-C8,N-(quinilinyl-n-Me)}(PiPr3)2] (79, n = 2, 3, 6, 7)
complexes. It is interesting to note that a four-membered cyclometalated fragment is
formed in all cases (Table 2) [65]. Complex [OsH6(PiPr3)2] reacts with 2-vinylpyridine to
form an osmacycle 80 where C(sp2)−H activation of the vinyl is observed (Table 2) [56].

A curious reductive cyclometalation occurs when the dihydride 16e OsIV complex
[OsH2Cl2(PiPr3)2] reacts with an excess of allylamine. Cyclometalated OsII species 81 is
formed alongside with the [HPiPr3]Cl salt (Figure 15). The final product is coordinated by
two molecules of allyl amine. One of them is cyclometalated through the insertion of the
alkene fragment into the Os−H bond. The mechanism proposed by the authors suggests a
C−H activation to justify the [HPiPr3]Cl formation. This cyclometalated complex 81 is the
starting material to form a variety of other complexes by either ligand metathesis or CO
and allene insertions [66].

Molecules 2021, 26, x FOR PEER REVIEW 15 of 51 
 

 

 
Figure 15. Reaction between [OsH2Cl2(PiPr3)2] and allylamine. 

The cyclometalation of helicenes occurs similarly (Figure 16). [OsH2Cl2(PiPr3)2] reacts 
with the ligand and the cyclometalation to form 82 is accompanied by the reduction of the 
metal center to OsIV in refluxing toluene [67]. 

 
Figure 16. Cyclometalation via by C–H activation assisted by reductive elimination of hydride 
ligands. 

3.3.2. bis- and tris-Osmacycles 
Several osmacycles that contain two osmium–carbon σ-bonds (bis-cyclometalated), 

as well as some rare examples with three osmium–carbon σ-bonds (tris-cyclometalated) 
were prepared from [OsH6(PiPr3)2]. The first examples were classified by Esteruelas et al. 
as “multiple C−H bond activations”. Complex [OsH6(PiPr3)2] reacts with phenyl-substi-
tuted pyrimidines or triazines to form the corresponding [Os(C~N~C)] pincer derivatives. 
The reaction with phenyl pyrimidines leads to mono-cyclometalated complexes along with 
the pincer species. The phenyl triazine ligand forms pincer complex 85 but can also gen-
erate a dinuclear bis-cyclometalated osmium complex 86 (Figure 17) [68]. 

 
Figure 17. Synthesis of bis-cyclometalated complexes from [OsH6(PiPr3)2]. 

Figure 15. Reaction between [OsH2Cl2(PiPr3)2] and allylamine.

The cyclometalation of helicenes occurs similarly (Figure 16). [OsH2Cl2(PiPr3)2] reacts
with the ligand and the cyclometalation to form 82 is accompanied by the reduction of the
metal center to OsIV in refluxing toluene [67].

Molecules 2021, 26, x FOR PEER REVIEW 15 of 51 
 

 

 
Figure 15. Reaction between [OsH2Cl2(PiPr3)2] and allylamine. 

The cyclometalation of helicenes occurs similarly (Figure 16). [OsH2Cl2(PiPr3)2] reacts 
with the ligand and the cyclometalation to form 82 is accompanied by the reduction of the 
metal center to OsIV in refluxing toluene [67]. 

 
Figure 16. Cyclometalation via by C–H activation assisted by reductive elimination of hydride 
ligands. 

3.3.2. bis- and tris-Osmacycles 
Several osmacycles that contain two osmium–carbon σ-bonds (bis-cyclometalated), 

as well as some rare examples with three osmium–carbon σ-bonds (tris-cyclometalated) 
were prepared from [OsH6(PiPr3)2]. The first examples were classified by Esteruelas et al. 
as “multiple C−H bond activations”. Complex [OsH6(PiPr3)2] reacts with phenyl-substi-
tuted pyrimidines or triazines to form the corresponding [Os(C~N~C)] pincer derivatives. 
The reaction with phenyl pyrimidines leads to mono-cyclometalated complexes along with 
the pincer species. The phenyl triazine ligand forms pincer complex 85 but can also gen-
erate a dinuclear bis-cyclometalated osmium complex 86 (Figure 17) [68]. 

 
Figure 17. Synthesis of bis-cyclometalated complexes from [OsH6(PiPr3)2]. 

Figure 16. Cyclometalation via by C–H activation assisted by reductive elimination of
hydride ligands.

3.3.2. bis- and tris-Osmacycles

Several osmacycles that contain two osmium–carbon σ-bonds (bis-cyclometalated), as
well as some rare examples with three osmium–carbon σ-bonds (tris-cyclometalated) were
prepared from [OsH6(PiPr3)2]. The first examples were classified by Esteruelas et al. as
“multiple C−H bond activations”. Complex [OsH6(PiPr3)2] reacts with phenyl-substituted
pyrimidines or triazines to form the corresponding [Os(C~N~C)] pincer derivatives. The
reaction with phenyl pyrimidines leads to mono-cyclometalated complexes along with the
pincer species. The phenyl triazine ligand forms pincer complex 85 but can also generate a
dinuclear bis-cyclometalated osmium complex 86 (Figure 17) [68].
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More recently, Esteruelas et al. described tris-cyclometalated osmium complex 87 pro-
duced from 3 eq of N,N’-diphenylbenzimidazolium chloride [Ph2BImH]Cl
and [OsH6(PiPr3)2] in the presence of a base. In acidic medium (HBF4), one cyclometalated
phenyl group of 87 is protonated and a reductive elimination of hydride with another
phenyl group forms a cationic octaedral complex 88 stabilized by two agostic interactions
between osmium and C−H bonds (Figure 18) [69]. The replacement of chloride by BF4

-

in the N,N’-diphenylbenzimidazolium salt promoted the tridentate coordination to form
89. Monocyclometalated complex 90 was made using of one equivalent of [Ph2BImH]Cl.
However, complex 87 could be obtained through the subsequent reaction with another
equivalent of the ligand [69].
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3.4. [Os(η6-arene)Cl2]2

The [Os(η6-arene)Cl2]2 dimers usually display similar reactivity as their widely used
ruthenium analogues. The bridging chloride bonds are readily broken in polar solvents or
in the presence of coordinating ligands. Monomers formed were used to prepare a variety
of osmacycles [70].

3.4.1. mono-Osmacycles

In 2003, piano-stool neutral 92 and cationic 93 osmacycles were prepared from the
dimeric [Os(η6-C6H6)(µ-Cl)Cl]2 precursor (Figure 19) [71]. We are particularly proud
that the first experiments were carried out in the lab of Michel Pfeffer in Strasbourg.
Needless to say that background for this work was previously created by Michel through
the thorough investigation of the chemistry of matching ruthenium complexes [72–75].
Coordinated benzene and acetonitrile in 93 are easily substituted by 2,2′-bipyridines or 1,10-
phenantroline to form octahedral cationic complexes (94, 95, 96) [71]. Complex 92 can also
be synthetized through a transmetalation reaction with organomercurial derivatives and the
[Os(η6-C6H6)(µ-Cl)Cl]2 dimer [71]. Similarly, series of complexes bearing cyclometalated
2-phenylpyridine and N,N-dimethylbenzylamines with different electron-donating groups
such as 4-OMe (97b) and 3,5-(OMe)2 (97c) were prepared with the aim to modulate the
electron density at the osmium center [76].
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Cl)Cl]2 to give structurally similar complex 100 after treatment with KPF6 [78]. This meth-
odology was also successfully employed to prepare cyclometalated complexes of iridium 
and ruthenium [78]. 

Figure 19. Cyclometalated osmium complexes obtained from [Os(η6-C6H6)(µ-Cl)Cl]2.

Transmetalation between [Os(η6-C6H6)(µ-Cl)Cl]2 and silver(I) compounds is exem-
plified by the reaction of the 1-phenyl-3-methyl-1H-benzimidazolium [AgPhMeBIm]I
complex. Intermediate 98 forms first followed by the metalation of the phenyl group in
the presence of Al2O3. Piano-stool mono-cyclometalated complex 99 is the final product
(Figure 20) [77]. It takes two days for triazolium silver salts to react with
[Os(η6-C6H6)(µ-Cl)Cl]2 to give structurally similar complex 100 after treatment with
KPF6 [78]. This methodology was also successfully employed to prepare cyclometalated
complexes of iridium and ruthenium [78].
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3.4.2. bis- and tris-Osmacycles

A few bis- and tris-cyclometalated osmium complexes have been described [79,80].
Such compounds differ from pincer complexes, as they contain two or three cyclometalated
ligands, respectively. Complexes [Os(phpy)2(bpy)]PF6 (102) and [Os(phpy)3] (101) were
prepared from organomercurial Hg(phpy)2 and mono-cyclometalated complex 92. Their
electrochemical properties were compared with those of the corresponding coordination
complex [Os(bpy)3](PF6)2 (103) and mono-cyclometalated complex [Os(phpy)(bpy)2]PF6
(94), (Figure 19). Each Os−C bond decreases the OsII/OsIII reduction potential by ca.
500 mV ranging from 888 mV for coordination compound 103 to −958 mV (vs. Ag/AgCl)
for tris-cyclometalated complex 101 [79,80] (Figure 21).
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Figure 21. Synthesis of bis- and tris-cyclometalated complexes (top) and cyclic voltammo-
grams showing the influence of the number of Os−C bonds on the OsII/OsIII reduction
potentials). Bottom: cyclic voltammograms of 103, 94, 101 and 102 (1 mM) in MeCN:
25 ◦C, scan rate 0.1 V s−1, 0.1 M nBu4NPF6, glassy carbon electrode. Inset shows a plot of
the formal reduction potential vs. the number of C donors.
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Imidazolium complex 99 can be converted to a complex with four acetonitrile ligands
105, which undergoes a second transmetalation with the organosilver compound to give
106. The latter affords tris-cyclometalated complex 107 as shown in Figure 22 [77].
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3.5. Other Precursors

Complexes [cation]2[OsX6] and [OsX3(tterpy)] (tterpy = 4′-(4-tolyl)-2,2′:6′,2”
- terpyridine) were also used as osmacycle precursors. Complex [Et4N]2[OsCl6] reacts with
1,3-(CH2PtBu2)2C6H4 in the presence of NEt3 affording 16e pincer
complexes [OsCl(P~C~P)(CO)] (108) and [OsCl(H2)(P~C~P)] (109) [81]. It is suggested
that OsIV is first reduced to OsII by methanol to produce CO. When the osmium precursor
and the ligand are heated in 2-propanol, the solvent is not decarbonylated and dihydride
complex 109 is obtained (Figure 23) [81].
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Complex [Et4N]2[OsCl6] reacts also with 1,5-bis(di-terbutylphosphino)pentane in the
presence of NEt3 and H2 in 2-pentanol to give P~C~P alkyl complex 110. A posterior
thermal treatment initiates second C−H bond activation via α-elimination to give carbene
complex 111 (Figure 24) [82].
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An interesting cycloosmation occurs within alkenyl–allenylidene–acetonitrile complex
109 which can form an osmacyclopentapyrrole at reflux in acetonitrile (Figure 25). The
proposed mechanism is presented in Figure 25 [83].
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Various OsIII bis(N-methylbenzimidazolyl)benzene or 1,3-di(pyridin-2-yl)benzene
complexes were prepared from [OsCl3(Mebip)] (118) (Mebip = bis(N-methylbenzimidazolyl)
pyridine) or [Os(ttpy)Cl3] (121) (ttpy = 4′-(4-tolyl)-2,2′:6′,2”-terpyridine) as shown in
Figure 26 [84].
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4. Representative Reactions of Osmacycles
4.1. Reactivity of Chelate and Pincer Complexes

Ligand substitution in 59a (see also Figure 14) yields neutral mono-osmacycle 124 [51].
On the other hand, ruthenium analogue 59b displayed a different behavior since a parallel
insertion of CO into the Ru−C bond in addition to ligand substitution accounts for the
formation of 126 (Figure 27). In order to force the CO insertion into the Os−C bond,
complex 59a was treated with AgSbF6. However, the cationic species 125, product of the
substitution of the chloride ligand, was obtained [51].
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Reactions of 2-phenylpyridine osma(II)cycle 51 are summarized in Figure 28 [50]. The
cyclometalated ligand is activated by OsII towards electrophilic substitution allowing the
introduction of diverse functional groups. Nitration occurs at both the 4- and 6-position of
the phenyl ring, whereas bromination takes place at the 4-position only. Complex 51 reacts
also with CO2/H+ or Bu3SnCl as shown in Figure 28 [50].
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Figure 28. Electrophilic substitution reactions at the phenyl ring of cyclometalated complex 51.

Gusev et al. studied the reactivity of P~C~P pincer compounds (Figure 29) [81].
Complex 108 reacts with NaBH4 and the mixture of two hydrides 128 and 129 is obtained.
A chloride for iodide exchange takes place in 109 in the presence of MeI. The reaction of 109
with NaBH4 gives trihydride 131. Complex 132 with two H2 molecules is also obtained in
the presence of H2 at −80 ◦C; at higher temperatures one of the coordinated H2 undergoes
oxidative addition to yield complex 133 [81].

Reactions of P~C~P pincer complex 25 with a series of alkynes afford carbene and
carbyne osmacycles (Figure 30) [40]. Complex 25 is also convertible to monohydride 141
and trihydride 142 in the presence of NaH (Figure 30). In an excess of phenylacetylene, 142
gives 143 with three incorporated phenylacetylene ligands. Remarkably, the coordination
of all three is different including acetylide- and vinylidene-binding motifs. Vinylidene
complex 135 reacts with Tl(OAc) to form 144. Chloride is being replaced by acetate which
acts as a bidentate ligand [85].
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Related P~C~P pincer complex 26 reacts with H2 giving rise to dihydride species
145. Carbonyl derivatives 146 and 147 can also be prepared in the presence of CO
(Figure 31) [41].
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Dihydride [OsH2(PiPr3)2(C~C′~N)] (73) reacts with HBF4 to
yield [OsH2(PiPr3)2(C~C”~N)]BF4 (148) where the carbon in α position to the central
carbon of the pincer ligand was protonated by the acidic medium [60]. Similarly, C~N~C’
pincer complexes 74 and 75 accept one proton at a metalated carbon to form cationic mono-
cyclometalated complexes, which further react with nitriles as shown in Figure 32 [62].
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4.2. Reactions of Hydride Complexes

Hydrides in osmacycles promote reactions of adjacent ligands. For example, complex
80 reacts with HBF4 to give 63 with regenerated 2-vinylpyridine, the Os-trihydride unit
being transformed into the Os-hydride-dihydrogen functionality. Subsequent treatment
of 63 at 50 ◦C in the presence of Ph2CO induces the reduction of the double bond and
formation of 64. The elimination of benzophenone in acetonitrile at room temperature
gives 153 [56]. In the case of trihydride complex 61 (Figure 33), addition of HBF4, however,
affords dihydrogen derivative 154, which is converted to cationic complexes (155, 156) in
the presence of NaCl or CsF, the cyclometalated fragment being unaffected [86].
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4.3. Ligand Substitution in Osmacycles

Piano-stool osmacyle 93 is a versatile precursor for a series of octahedral 2,2′-bipyridine,
1,10-phenanthroline and MeCN complexes (Figure 34). The substitutions are due to the
lability of the coordinated benzene in polar solvents such as MeCN and MeOH. Cyclomet-
alated N,N-dimethylbenzylamine derivatives 97 behave similarly affording complexes
159–162 [71,76,79,80].

Complex 44 reacts with PMe3 and benzonitrile leading to cationic osmacycles. New
species such as 167 with a η2-allene ligand are formed. Osmabenzene derivatives are
also produced in many instances [87]. The reaction pathways of 44 are summarized in
Figure 35.

Interesting ring expansions of the cyclometalated fragment take place when 49 reacts
with HC≡CCH(OH)Ph or PhC≡CH to give complexes 170–174 (Figure 36) [48].
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5. Applications of Osmacycles

Osmacycles find applications in many areas including homogeneous catalysts; they
are used as chemical sensors, luminescent materials, and anticancer agents. Relevant
examples are summarized below.

5.1. Catalysis

Although ruthenium and palladium cyclometalated complexes have been widely
investigated in homogeneous catalysis [19–21,88–90], osmium analogues are not as widely
used. Perhaps they have not yet demonstrated their potential. However, there are a
few examples where osmacycles show good catalytic activity and look like promising
candidates for new applications. In particular, binding of H2 to 25 affords 175 with η2-
bound H2 (Figure 37) which might be a key intermediate in catalytic hydrogenation [91].
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Figure 37. Coordination of dihydrogen to a pincer complex.

Hexamerization of phenylacetylene at pincer complex 25 is a promising reaction which
gives a mixture of isomers of diosmium complex 176 with a µ-1,2-bis(η5-cyclopentadienyl)-
1,2-diphenylethane bridging ligand (Figure 38) [92].
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Figure 38. Hexamerization of phenylacetylene at osmium pincer complex.

Baratta et al. contributed significantly to the homogeneous catalysis by cyclometa-
lated Ru and Os complexes. Benzo[h]quinoline C~N~N osmium pincers were tested as
hydrogenation catalysts. Three osmium complexes [OsX(C~N~N)(dppb)] (177) (X = Cl,
H, OR; dppb = 1,4-bis(diphenylphosphino)butane) were studied in catalytic hydrogen
transfer from isopropanol to asymmetric ketones. Using a catalyst charge of 0.005% mol,
conversions above 94% in less than 30 min with TOFs of 105–106 h−1 were achieved. The
ruthenium analogues of 177 were slightly more active for the same process, with conver-
sions above 97% within 10 min, presenting TOFs values in the order of 106 h−1 [93]. Chiral
ligands in 178 were tested for the asymmetric hydrogenation of prochiral ketones and
conversions up to 92% with 74–94% enantiomeric excess (ee) were reported [94]. Structural
modifications of the benzo[h]quinoline ligands gave two new series of chiral osmium
complexes 179. The complexes with a Josiphos ligand were used in the hydrogenation of
acetophenone with conversions up to 97% with TOFs around 104 h−1 and ee up to 86%. In
the same work, the ruthenium analogue of 179a was also studied. Conversions up to 95%
with TOFs around 104 h−1 and ee between 90 and 99% were obtained. However, in the
case of ruthenium the reaction was performed at 40 ◦C instead of 70 ◦C for the osmium
catalyst [95]. Different C~N~N pincer ligands were also used, keeping the Josiphos ligand
system in complexes 180. These were used for catalytic ketone reduction. Conversions were
above 93% with TOFs 104–105 h−1 and ee between 90 and 99%. The ruthenium analogues
were also obtained, and the catalytic activity for both metals was comparable [96]. The
results are summarized in Figure 39.
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Figure 39. Hydrogenation reactions catalyzed by osmium pincer complexes.

Osmium C~N~N pincer complexes 177 (X = Cl) and 178a were employed in dehy-
drogenation of alcohols to form the corresponding ketones and H2. The dehydrogenation
of α-tetralol using a catalyst charge of 0.4% mol was run with 36–44% conversions in
24 h. Their ruthenium analogues were also tested and were found to be more active, with
conversions between 90–93% at the same reaction time [97]. The osmium C~N~N pincer
complexes 181 and 182 were used for the racemization of alcohols with good results. In this
case, a similar catalytic activity was observed for both ruthenium and osmium analogues
(Figure 40) [98].
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with the same amount of catalyst, TOFs were 473–1648 h−1 at 50% [101]. The 2-(aminome-
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Figure 40. C~N~N pincer complexes used for racemization of chiral alcohols.

Fluorinated pincer complex [OsH(CF3P~C~P)(cod)] (183) (Figure 41) obtained from
[Os(cod)(η3-2-methylallyl)2] was tested in alkane dehydrogenation. The catalyst showed a
longer lifetime than its ruthenium analogue. The dehydrogenation of cyclooctane in the
presence of tert-butylethene as a hydrogen donor was carried out. A significant production
of cyclooctene was detected within a few minutes at 200 ◦C [99].
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Figure 41. Alkane dehydrogenation catalyzed by a fluorinated P~C~P pincer complex.

Esteruelas’ group reported on the metalation of imidazolium salts using [OsH6(PiPr3)2].
Stable compounds 185 and 187, like possible intermediates in catalytic hydrogenation, were
isolated (with yields from 83 to 89%) through the osmium reduction in the presence of
HBF4. The authors also explored the substitution of the η2-bonded molecular hydrogen by
a coordinating molecule like acetonitrile [100].

The metalation of 1-(2-methoxy-2-oxoethyl)-3-methylimidazolium chloride afforded
cyclometalated acyl complex 188 which coordinates dioxygen, dihydrogen, and carbon
monoxide (Figure 42). Complex 188 was used as a catalyst for alcoholysis and hydroly-
sis of pinacolborane. Using a 2% mol catalyst charge for the alcoholysis reaction, TOFs
between 62 and 3644 h−1 were obtained at 50% conversion. For the hydrolysis carried
out with the same amount of catalyst, TOFs were 473–1648 h−1 at 50% [101]. The 2-
(aminomethyl)pyridine-based complexes 190 were used in the imine-to-amine hydrogena-
tion (Figure 43). Depending on the reaction conditions, conversions between 26 and 99%
were observed. In this work, the ruthenium equivalents of 190 were also obtained. In
general, under the same reaction conditions, the osmium complexes were found to be less
active than the corresponding ruthenium derivatives [102].



Molecules 2021, 26, 1563 31 of 50Molecules 2021, 26, x FOR PEER REVIEW 32 of 51 
 

 

 
Figure 42. Examples of hydride complexes used in the alcoholysis and hydrolysis of pinacolborane. 

 
Figure 43. Hydrogenation of imines catalyzed by C~N~N pincer complexes. 

Esteruelas et al. described the heterobinuclear iridium–osmium compound 
[(PiPr3)2(H)2Ir{μ-(κ2-Npy,Nimine-BMePI-κ2-Nimine,C4iso)}OsH3(PiPr3)2] (191) incorporating 1,3-
bis(6′-methylpyridyl-2′-imino)isoindoline (HBMePI) as a bridging ligand. This complex 
was tested in the base-free dehydrogenation of secondary alcohols using 7% mol of cata-
lyst. Conversions up to 84% were obtained. Interestingly, heterobimetallic complex 191 
proved to be more active than the corresponding monometallic components taken inde-
pendently (Figure 44) [103]. 

Figure 42. Examples of hydride complexes used in the alcoholysis and hydrolysis of pinacolborane.

Molecules 2021, 26, x FOR PEER REVIEW 32 of 51 
 

 

 
Figure 42. Examples of hydride complexes used in the alcoholysis and hydrolysis of pinacolborane. 

 
Figure 43. Hydrogenation of imines catalyzed by C~N~N pincer complexes. 

Esteruelas et al. described the heterobinuclear iridium–osmium compound 
[(PiPr3)2(H)2Ir{μ-(κ2-Npy,Nimine-BMePI-κ2-Nimine,C4iso)}OsH3(PiPr3)2] (191) incorporating 1,3-
bis(6′-methylpyridyl-2′-imino)isoindoline (HBMePI) as a bridging ligand. This complex 
was tested in the base-free dehydrogenation of secondary alcohols using 7% mol of cata-
lyst. Conversions up to 84% were obtained. Interestingly, heterobimetallic complex 191 
proved to be more active than the corresponding monometallic components taken inde-
pendently (Figure 44) [103]. 

Figure 43. Hydrogenation of imines catalyzed by C~N~N pincer complexes.



Molecules 2021, 26, 1563 32 of 50

Esteruelas et al. described the heterobinuclear iridium–osmium compound
[(PiPr3)2(H)2Ir{µ-(κ2-Npy,Nimine-BMePI-κ2-Nimine,C4

iso)}OsH3(PiPr3)2] (191) incorporating
1,3-bis(6′-methylpyridyl-2′-imino)isoindoline (HBMePI) as a bridging ligand. This complex
was tested in the base-free dehydrogenation of secondary alcohols using 7% mol of catalyst.
Conversions up to 84% were obtained. Interestingly, heterobimetallic complex 191 proved
to be more active than the corresponding monometallic components taken independently
(Figure 44) [103].
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Figure 44. Heterobimetallic complex used in dehydrogenation of secondary alcohols.

The resolution of a helical chiral octahedral osmium complex afforded optically pure
Λ (192) and ∆ (193) enantiomers (Figure 45). The ∆ enantiomer was tested as a catalyst in
two processes, viz. C(sp3)–H aminations of sulfonylazide and azidoformate. For the former,
a product yield of 96% was observed using 2% mol of catalyst, with an enantiomeric ratio
of 92:8 (Figure 45). Under similar conditions, a yield of 86% was registered in the case of
azidoformate with the enantiomeric ratio of 89:11. This is the first example of an osmium
complex with a central (helicoidal) chirality successfully used in asymmetric catalysis [104].
It is important to mention that Meggers’ group also developed highly effective enantiose-
lective catalytic processes with metal-centered chiral octahedral ruthenium and rhodium
complexes [105–107].
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Octahedral cyclometalated 2-phenylpyridine RuII and OsII complexes were investi-
gated as catalysts for the atom transfer radical polymerization (ATRP). Polymerization of
styrene was catalyzed by ruthenium complexes though the osmium counterparts were not
able to mediate the polymerization and just traces of the polymer were observed [108].

5.2. Chemical Sensors and Biosensors

Oxidoreductases are enzymes that catalyze oxidative and reductive reactions. They are
used in various amperometric biosensors, including glucometers [109]. Active sites of the
enzymes do not usually exchange electrons with an electrode and therefore low-molecular-
weight compounds are commonly used to move the electrons. Known as electron shuttles
or mediators, they are often transition-metal complexes. In particular, cyclometalated ruthe-
nium derivatives were successfully coupled with a number of oxidoreductases such as
glucose oxidase, glucose and alcohol dehydrogenases, or peroxidases [110–112]. The MII/III

reduction potential is an essential feature for optimal performance of biosensors [113],
and since the potentials are tunable as it is illustrated in Inset to Figure 21 [80], the corre-
sponding osmium-based mediators were exploited. In particular, a series of octahedral
osmium(II) complexes of the general formula [Os(N~C)(N~N)(MeCN)2]PF6 (159, 161) and
[Os(N~C)(N~N)2]PF6 (94, 95, 162, 163) were investigated, where C~N is cyclometalated
2-phenylpyridine or N,N-dimethylbenzylamine and the N~N ligands are 2,2′-bipyridines
or 1,10-phenanthrolines. The complexes were evaluated as electron shuttles with glucose
oxidase (GO) for potential applications in amperometric enzymatic glucose sensors. All
complexes showed extremely fast electron transfer with the enzyme, with the second-order
rate constants k2 for bimolecular oxidation of reduced glucose oxidase in the range of
(0.67 − 2.90) × 106 M−1 s−1 (Figure 46 and Table 3) [76].
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Discussed above mono- [Os(phpy)(bpy)2]PF6 (94), bis- [Os(phpy)2(bpy)]PF6 (102) and 
tris-cyclometalated [Os(phpy)3] (101) derivatives turned out to be attractive objects for 
electrochemical studies. Using related coordination complex [Os(bpy)3](PF6)2 (103), it was 
shown that the OsII/OsIII reduction potential significantly decreases as the number of Os−C 
bonds increases. Rates of electron transfer between the osmium center and the active sites 
of oxidoreductases including horseradish peroxidase (HRP) were investigated (Figure 47). 
Cyclic voltammetry was used to estimate the rate constants. In the case of HRP, the results 
showed that the rate constants k2 are higher than k3 for all compounds, i.e., electrons move 
faster from OsII to compound I than to compound II (see Figure 47). The value of both rate 
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[Os(phpy)2(bpy)]PF6 (102) and then decline for the tris-cyclometalated complex (101). It 
should be mentioned that all complexes are very reactive. The Monte Carlo docking sim-
ulations helped to evaluate how the complexes approach the active site of HRP [80]. 

Figure 46. Electron transfer pathway between osmium shuttle and glucose oxidase (GO).

Table 3. Reduction potential (OsII/OsIII) and rate constants k2 for the electron transfer between
osmium complexes and the active site of glucose oxidase (GO). Reference electrode Ag/AgCl. [Os]
20 µM, GO 1.0 × 10−6 M, in phosphates buffer pH 7.0. Scan rate10 mV/s [76].

Complex E◦ (mV) k2 (M−1s−1)

162 −51 0.67 × 106

163 13 4.80 × 106

161 32 2.00 × 106

94 84 2.90 × 106

95 31 1.80 × 106

159 109 2.90 × 106

Discussed above mono- [Os(phpy)(bpy)2]PF6 (94), bis- [Os(phpy)2(bpy)]PF6 (102) and
tris-cyclometalated [Os(phpy)3] (101) derivatives turned out to be attractive objects for
electrochemical studies. Using related coordination complex [Os(bpy)3](PF6)2 (103), it
was shown that the OsII/OsIII reduction potential significantly decreases as the number
of Os−C bonds increases. Rates of electron transfer between the osmium center and the
active sites of oxidoreductases including horseradish peroxidase (HRP) were investigated
(Figure 47). Cyclic voltammetry was used to estimate the rate constants. In the case of
HRP, the results showed that the rate constants k2 are higher than k3 for all compounds, i.e.,
electrons move faster from OsII to compound I than to compound II (see Figure 47). The
value of both rate constants increases in the series [Os(bpy)3](PF6)2 < [Os(phpy)(bpy)2)]PF6
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(94) < [Os(phpy)2(bpy)]PF6 (102) and then decline for the tris-cyclometalated complex (101).
It should be mentioned that all complexes are very reactive. The Monte Carlo docking
simulations helped to evaluate how the complexes approach the active site of HRP [80].
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tensively studied in various fields such as photochemical conversion of solar energy, pho-
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Figure 47. Mono-, bis-, and tris-cyclometalated complexes used as electron shuttles and electron
transfer pathway with horseradish peroxidase (HRP).

Bis-cyclometalated complex [Os(phpy)2(bpy)]PF6 (102) was tested as a mediator in
a prototype of an amperometric biosensor to quantify hydrogen peroxide (Figure 48) An
iron(III)-TAML (TAML = tetraamido macrocyclic ligand) catalyst used as an alternative to
peroxidase enzymes was immobilized on an electrode surface with the osmium mediator.
The activity and sensitivity of such a device were similar to those of a biosensor based on
HRP enzyme [114].
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5.3. Electronic Properties and Photophysics

Due to a unique combination of spectroscopic, photophysical, photochemical and
electrochemical properties, octahedral RuII and OsII polypyridyl complexes have been
extensively studied in various fields such as photochemical conversion of solar energy,
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photocatalysis and in molecular electronic devices. Their properties can be modulated
by modifying the ligand structures and by introducing ancillary ligands [115,116]. The
major goal is to enhance excited state lifetimes of the compounds at room temperature
by increasing the energy gap between the radiative 3MLCT and quenching 3MC states by
destabilizing the 3MC state using cyclometalated ligands [117,118]. However, the enhanced
spin-orbit coupling of the third-row elements when compared to the second-row elements
usually makes optoelectronic properties of osmium complexes notably different from those
of ruthenium derivatives [119]. Nevertheless, as we discuss in this section, switching from
ruthenium to osmium has proven to be successful in generating promising materials.

Sierra et al. synthesized dinuclear cyclometalated trihydride osmium(IV) complexes
(69–71, 194, 195) (Figure 49) which were studied by cyclic voltammetry. Two quasi-
reversible processes corresponding to the OsIV/OsV and OsV/OsVI redox features were
observed. The OsIV complexes showed emission around 360 nm, with quantum yields
being between 0.005 and 0.020. The excitation spectra suggested that a ligand-centered
transition is at the origin of the emission. Moreover, spectrochemical studies showed that
the emission spectra remained very similar upon OsIV to OsV oxidation at 0.05 V vs. Fc+/Fc,
since only a slight increase in intensity was observed, with quantum yields from 0.013 to
0.026. Nevertheless, when a potential of 1.10 V was applied to carry out the oxidation of
OsV to OsVI, a bathochromic shift, from around 360 to around 400 nm, was observed along
with an increase in the luminescence intensity with quantum yields around 0.030–0.110.
DFT calculations suggest that the photophysical properties vary due to the conversion of
trihydride species to monohydride-dihydrogen derivatives during sequential oxidation
processes [59].
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Figure 49. Bimetallic luminescent complexes.

Kapturkiewicz et al. prepared the series of cationic osmium complexes 196 of the gen-
eral formula [OsCl(N~C)(PPh3)2(CO)] (N~C is a cyclometalated substituted 2-
phenylpyrididine) and measured their UV-visible absorption and emission spectra
(Figure 50). The complexes showed emission at 455–532 nm attributed to 3MLCT tran-
sitions. Importantly, only the solids emitted light at room temperature; the compounds
in solution were emissive only at a low temperature (77 K). The emission lifetimes are
relatively long, between 10 and 20 µs [120].
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Bis-(P~C~P) pincer osmium complex 39 (Figure 10) has a strong absorption at 250 nm
attributed to the ligand π→π* transitions. The emission at 546 nm in a dilute solution of
2-MeTHF at 77 K with a quantum yield of 0.6 and a lifetime of 8.0 µs suggests phospho-
rescence. The solid complex is also luminescent at room temperature at 556 nm, with a
quantum yield of 0.03 and a lifetime of 0.3 µs. The electronic structure of the complex and
related transitions were explored by DFT [45].

Carbene pincer ruthenium and iridium compounds display remarkable luminescent
properties [121]. Related osmium C~C’~C complexes 197 and 198 were obtained by react-
ing [OsCl4(N~N)] precursors (N~N = 2,2′-bypiridine, 1,10-phenanthroline, 4,4′-diphenyl-
2,2′-bypiridine) with bis-imidazolium or bis-benzimidazolium hexafluorophosphates in
refluxing ethylene glycol as a source of the CO ligand (Figure 51). The UV-visible absorp-
tion data showed intense and high-energy absorption at λ lower than 330 nm and a less
intense band at λ > 330 nm. The complexes are also emissive upon photoexcitation with
emission maxima in the red region (674−731 nm). The quantum yields reported were
between 10−4 and 10−2 and emission lifetimes in the order of 10−1 µs. The photophysical
parameters are sensitive to the modification of N~N and C~C’~C parts, suggesting that the
emissive-excited state should involve both fragments and the emission occurs due to the
energy dissipation of d(Os)→π*[N~N] MLCT transitions [122].

The photophysical studies of the C~C’~C mono- and bis-pincer compounds (199–204)
in Figure 51 revealed an intense absorption between 341 and 363 nm along with a less
intense band between 396 and 405 nm. TD-DFT calculations allowed to attribute the
high energy bands to interligand charge-transfer transitions and the low energy bands to
metal-to-ligand charge-transfer processes. Particularly, the bis-pincer complexes 202–204
exhibited emission in the blue-green region (475–578 nm), both in the solid state at room
temperature and in toluene solution (at room temperature and 77 K) with lifetimes in the
range of 10–29 µs. The best quantum yield is observed for complex 202 (R = CF3) with a
value of 0.62. This last complex 202 (R = CF3), with emission in the blue region, was chosen
for the fabrication of a model OLED device, obtaining promising results [123].
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The osmium complexes 205 and 206 with a tetradentate C~C~C~C ligand
(Cphenyl~Ccarbene~Ccarbene~Cphenyl) in Figure 51 can be viewed as bis-cyclometalated com-
pounds. The complexes with two coordinated DMSO ligands provide options for their re-
placement by bidentate diphosphines or dienes. Complexes bearing 1,2-
bis(diphenylphosphino)benzene emit light upon photoexcitation in the solid state at room
temperature and in solution of 2-MeTHF at 77 K. The bands between 630 and 549 nm were
attributed to the π-π* HOMO (Os and NHC fragment) to LUMO (diphenylphosphino) and
metal-to-ligand (osmium to phosphino ligand) charge-transfer transitions. In addition, the
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absorption spectra contained an intense band at 330 nm and a less intense band at 404 nm
attributed to metal-to-ligand charge-transfer transitions [124].

Bis-tridentate cyclometalated complexes [Os(N~N~N)(N~C~N)]PF6 (207, 208) have
been tested as molecular wires, and compounds 208, in which the N~C~N ligand with
a triarylamine substituent is separated from the metal center by an oligophenyl bridge,
were of special interest (Figure 52). This is due to the presence of two electrochemically
active centers, the metal and the triarylamine substituent which can undergo a N•+/N0

process (neutral nitrogen to positive radical nitrogen). These molecular wires show two
anodic redox features between +0.1 and +0.9 V vs. Ag/AgCl, the first one assigned to
the OsII/OsIII process and the second one to the N•+/N0 process, and an electron transfer
from the neutral amine to the OsIII center was observed in the one-electron oxidized form
[OsIII-N] [125].
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Figure 52. Bis-tridentate cyclometalated osmium complexes studied as molecular wires.

Esteruelas et al. studied the luminescent properties of C~C~N pincer complexes
derived from 2-azetidones (see Table 2). At room temperature, complex (73-L22) showed
yellow emission in the solid state at 571 nm (lifetime 1.1 µs) and at 562 nm in a toluene
solution (lifetime 2.0 µs), as well as green emission at 77K at 540 nm (lifetime 6.6 µs) [60].
Complexes 74 and 75 in Table 2 are phosphorescent upon photoexcitation in a poly(methyl
methacrylate) (PMMA) film and in 2-MeTHF at room temperature and 77 K. Both com-
pounds emit in the yellow region. The 2,6-diphenylpyridine complex 74 is more efficient,
the quantum yields being 0.28 (film) and 0.56 (solution). The introduction of oxygen be-
tween the pyridine and phenyl ring in 75 lowered the emission (quantum yields below
0.10). Curiously, the iridium analogue of 75 showed the opposite trend [126].

The absorption spectra of C~N~N and C~N~C pincer complexes 209–212 in Figure 53
are similar. They present two main bands between 279 and 317 nm and between 364 and
394 nm. TD-DFT calculations allowed to assign the high energy absorptions to ligand-
centered transitions while the low energy absorptions were assigned to metal-to-ligand
charge-transfer processes. The compounds were emissive upon photoexcitation in the solid
state at room temperature and in 2-MeTHF solution both at room temperature and at 77 K.
The use of pincer ligands allowed to obtain more rigid structures reducing both the energy
dissipation and the difference between the excited state and the ground state structures. As
a consequence, enhanced quantum yields in the range of 0.08–0.59 were obtained, lifetimes
being 1.5−5.0 µs in the solid state and 0.9–5.8 µs in solution [127].

The electronic structure of osmium bis-pincer complexes 213 with N~C~N cyclomet-
alated pyrene ligands (Figure 54) was explored by DFT and TD-DFT. It was found that
HOMO orbitals are mainly osmium in character. The LUMO orbitals were largely associ-
ated with ligand contributions. There are two intense bands absorption spectra between
282 and 372 nm assigned to intraligand transition from the pyrene and terpyridine frag-
ments. Two other intense bands between 410 and 447 nm were associated with intraligand
charge-transfer (ILCT) transitions. The bands observed between 513 and 556 nm were
due to MLCT transitions [128]. These experimental results launched a theoretical study
which helped to optimize photophysical features of the compounds. It was concluded that
compounds 214 in Figure 54 should display optimal properties [129].
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DFT calculations performed for bimetallic complex 215 shown in Figure 54 suggested
that the HOMO orbital is contributed by pyrene and metal centers. The LUMO orbital has
contributions from the pyrene moiety and pyridine rings. Two intense bands observed
between 457 and 507 nm were assigned to ligand-to-ligand charge-transfer transitions. An
absorption band between 800 and 1000 nm was assigned to metal-to-ligand (pyrene) charge-
transfer transitions. An electronic coupling between the neighboring osmium centers affects
cyclic voltammograms of osmium compounds and brings about two reversible OsII/OsIII

redox features overlapping at −0.15 V (vs. Fc/Fc+). A similar behavior is observed for
ruthenium but not for iridium complex [130].

5.4. Anticancer and Biological Properties

Transition metal derivatives have been extensively studied in medicinal chemistry,
often with emphasis on their anticancer activity. Organometallic complexes are currently
receiving special attention [131–137]. The leadership belongs to ruthenium compounds
including the clinical studies of metal-based anticancer drugs [138–141]. Omae published a
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comprehensive review on anticancer properties of cyclometalated complexes with a few
osmium examples [132]. Pfeffer and Gaiddon dedicated a review to ruthenacycles [142].
Examples of a few osmacycles were included in the recent review by Zhang devoted to
biological properties of osmium compounds [131]. Here, we show the most recent examples
of osmium cyclometalated complexes used in biological assays.

Meggers and Xia compared the anticancer activity of a series of osmium derivatives,
including complexes 43, 49, 164, 174, a new η2-allene compound (216, Figure 55), and
other non-cyclometalated complexes. The cytotoxic activity in HeLa cancer cells was
determined first by the evaluation of the half-maximum effective concentration (EC50) at
which viability of the cells is reduced to 50% after 24 h incubation. Observed values for
EC50 were between 1 and 30 µM. The best results were obtained with allene complex 216
which exhibited cytotoxic activity with EC50 = 1 µM. Because of this and its high stability,
studies of this complex were prioritized. The compound was tested against Burkitt-like
lymphoma (BJAB), showing an inhibition of the proliferation at concentrations lower than
1 µM. Another assay revealed that the compound induces apoptosis in BJAB cells by DNA
fragmentation. The results showed that even a 0.3 µM concentration, 216 induced DNA
fragmentation in 25% of the cells, with the highest DNA fragmentation observed in 75% of
the cells at 5 µM. In addition, other experiments showed that apoptosis occurs through the
intrinsic mitochondrial pathway. The compound was also tested in leukemia cells (Nalm6),
Vcr-resistant NAlm6 cells and Dau-resistant Nalm6 cells (the last two are drug-resistant
leukemia cells) showing a lower activity, with EC50 higher than 1 µM, but with effective
activity at 5µM [143].
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The successful use of ruthenacycles and osmacycles as efficient electron shuttles for
oxidoreductase enzymes described in Section 5.2 prompted the investigation of the poten-
tial use of these compounds for biological applications. Gaiddon and Pfeffer evaluated the
cytotoxic properties of such compounds on series of human cancer cell lines. An exhaustive
work was published where a series of osmium cyclometalated compounds was tested in
in vitro cell growth inhibition in A172 glioblastoma cell line. The structures of the com-
pounds studied are summarized in Figure 56. First results with the piano-stool complexes
(92, 93, 217–219) showed moderate cytotoxic activity with IC50 values of 10−100 µM. The
octahedral complexes with bidentate cyclometalated ligands (94, 158, 159, 220–224) exhib-
ited very promising results with IC50 values in the nanomolar range. Pincer complexes
(225, 226) showed very poor cytotoxic activity, with IC50 values 21−375 µM, which could
be attributed to the presence of three labile acetonitrile ligands. Interestingly, the pincer
complexes with polypyridine ligands (227, 228) showed very good results with IC50 values
between 0.3 and 4.1 µM. There was no correlation between the cytotoxicity and structure.
However, the reduction potentials were measured for all complexes and the results showed
that the compounds with the potentials between 0.3 and 0.6 V (vs. SCE) displayed the
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lowest IC50 values. The lipophilicity was also determined and the complexes with the
highest activity showed log(Po/w) values around 2. These results allowed to hypothesize
that the compounds could strongly modify the metabolism of the cells by interactions
with oxidoreductases and this would partially explain the relationship between the ac-
tivity and the reduction potentials [144]. Another important target of such studies is to
discover molecules that can overcome drug resistance induced by cisplatin. Recently, the
mechanisms governing the variability in the cytotoxicity of two ruthenium cyclometalated
compounds and their osmium equivalents were studied (Figure 34, complexes 95 and
159). Their anticancer properties in vitro and in vivo were first evaluated and genes in-
volved in their sensibility/resistance were identified by correlating their cytotoxicity with
transcriptomic data of 60 cancer cell lines. Docking and functional studies demonstrated
that inhibition of known resistance mechanisms, ABCB1 export and EGFR expression,
allowed to improve the activity of cyclometalated complexes. Interestingly, switching from
ruthenium to osmium favored the cytotoxicity while reducing the sensibility to the ABCB1
export mechanism [145].

Kandioller developed the coordination of a series of 4-phenyl-1,2,3-triazole-based
ligands to ruthenium and osmium to prepare complexes 229 in Figure 57. Their cytotoxic
activity was evaluated on three cancer cell lines: non-small-cell lung cancer (A549), colon
adenocarcinoma (SW480) and human ovarian carcinoma (CHI/PA-1). The free ligands
did not show cytotoxic activity within the studied concentrations range. However, the
ruthenium derivatives bearing ligands a and b showed significant cytotoxicity with IC50
values around 13 µM in A549, 7 µM in SW480 and 4 µM in CHI/PA-1. Osmium coun-
terparts displayed an even higher activity, ligands a and b being also the most active,
with IC50 around 6 µM for A549, 3.6 µM for SW480, and 1 µM for CHI/PA-1 cells. The
topoisomerase IIα inhibition was investigated but no compound was capable of inhibiting
its function, indicating that the mechanism of action does not follow this pathway. The cell
cycle distribution in SW480 in response to treatment with the complexes was determined
and only the osmium derivatives exhibited elimination of the S phase fraction, information
relevant in order to understand the mechanism of action [146].

Using a triazole-based ligand, Makhubela prepared a series of half-sandwich ruthe-
nium, rhodium, iridium and osmium complexes (230), Figure 57. The complexes were
tested on different cancer cell lines (leukemia MT4, cervical cancer HeLa, kidney adeno-
carcinoma HEK293 and lung cancer A549), and the CC50 (cytotoxic concentration with
50% of the maximum decrease in cell viability) was calculated. The ruthenium derivative
(230a) exhibited a moderate activity against A549, but the osmium compound (230b) was
much more active with a CC50 value of 6.4 µM, comparable to cisplatin used as reference.
However, its activity was very modest against the other cancer cell lines. Interestingly, the
rhodium and iridium derivatives were more effective against all cancer cell lines when
compared to their ruthenium and osmium analogues [147].

Benzimidazole-based ligands were used by Ruiz to prepare the series of new osmium
complexes 231, Figure 57. Their antiproliferative activity was tested in six different human
cancer cell lines (including cisplatin-resistant cell lines), as well as non-tumorigenic human
endothelial hybrid cells and Buffalo green monkey cells. All osmium compounds showed
a higher cytotoxic activity than cisplatin in all cancer cell lines, with IC50 values lower
than 10 µM. The cytotoxicity against the non-cancer cells was very similar to cisplatin.
The cellular concentrations of both metals were measured in A2780 cells and the results
showed that the osmium cellular uptake is ten times higher than for platinum. Other
studies revealed that the compounds caused a decrease of the ROS levels and, as a result,
an affectation in the G0/G1 phase in the cell cycle is observed [148].

In a very recent work, Gómez-Gallego, Sierra and Esteruelas explored the reaction
between osmium precursor [OsH6(PiPr3)2] and nucleosides. Cyclometalated complexes
232–235 were obtained in good yields (Figure 58). The authors mentioned that this method-
ology could be applied to the functionalization of oligonucleotides with promising potential
biological applications [149].
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Many more biological applications of osmium-based complexes remain to be discov-
ered and exploited. For instance, the unique photophysical properties of osmacycles (see
Section 5.3) will undoubtedly open the field for further research on their use as PDT agents.
On the other hand, deeper in vivo studies are needed to confirm properties such as cellular
uptake ability, cellular distribution, as well as to determine essential pharmacokinetic data.

6. Conclusions

As this review demonstrates, even though osmacycles chemistry is still in a growing
stage, cyclometalated osmium compounds are essential in many aspects. The broadest
chemistry of osmium and the low reactivity of osmium compounds grants determina-
tion and studies of a variety of mechanisms, which in turn provide tools to design novel
complexes with a wide variety of relevant properties and applications. Due to the enor-
mous number of molecules, known or readily accessible, that can lead to cyclometalation
reactions, unique applications of osmacycles will see the light in the near future. Many
cyclometalated osmium derivatives have shown remarkable catalytic activity in various
reactions, principally hydrogenations and dehydrogenations, often similar and in some
cases superior to those reported for analogous ruthenium systems. Such results exhibit the
potential of osmacycles for the design of new highly effective and robust catalytic systems
for chiral and non-chiral processes. On the other hand, new osmium-containing cyclometa-
lated materials will continue to be studied for their activity in biological systems, and they
will likely be involved in the development of innovative chemical sensors, biosensors and
improved drugs.
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Abbreviations

2-MeTHF 2-methyl-tetrahydrofuran
A2780 Human ovarian cancer cell line
A549 Human lung cancer cell line
AND/OR Boolean operator for browsing in databases
ATRP Atom Transfer Radical Polymerization
B3LYP Becke three-parameter exchange and Lee–Yang–Parr correlation
BJAB Burkitt-like lymphoma
Bn Benzyl substituent
bpy 2,2′-bipyridine
C~C’~N Pincer ligand with Carbon-Carbon-Nitrogen, as donor atoms
C~C~C Pincer ligand with Carbon-Carbon-Carbon, as donor atoms
C~C~C~C Tetradentate Ligand with Carbon-Carbon-Carbon-Carbon as donor atoms
C~E Bidentate ligand with Carbon and E as donor atoms
C~N Bidentate ligand with Carbon and Nitrogen as donor atoms
C~N~C Pincer ligand with Carbon-Nitrogen-Carbon as donor atoms
C~N~N Pincer ligand with Carbon-Nitrogen-Nitrogen as donor atoms
C~N~O Pincer ligand with Carbon-Nitrogen-Oxygen as donor atoms
C~O Bidentate ligand with Carbon and Oxygen as donor atoms
CC50 50% Cytotoxic concentration
CHI/PA-1 Human ovarian carcinoma cells
cod 1,4-cyclo-octadiene
DFT Density Funtional Theory
DMSO Dimethyl sulphoxide
DNA Deoxyribonucleic acid
dpbH 1,3-di(2-pyridyl)benzene
dppb 1,4-bis(diphenylphosphino)butane
E Donor atom such as: N, P, O, S, As, Se
EC50 50% Effective concentration
GO Glucose oxidase
HBMePI 1,3-bis(6′-methylpyridyl-2′-imino)isoindoline
HEK293 Kidney adenocarnocinoma cell line
HeLa Cervical cancer cell line
HOMO Highest Occupied Molecular Orbital
HRP Horseradish peroxidase
IC50 50% Inhibitory concentration
ILCT Intraligand Charge-Transfer
log(Po/w) N-Octanol-water partition coefficient
LUMO Lowest Unoccupied Molecular Orbital
Mebib 2-deprotonated form of 1,3-bis(N-methylbenzimidazolyl)benzene
Mebip bis(N-methylbenzimidazolyl)pyridine)
MLCT Metal-to-Ligand Charge Transfer
MT4 Leukemia cell line
N~C~N Pincer ligand with Nitrogen-Carbon-Nitrogen as donor atoms
N~N Bidentate ligand with Nitrogen-Nitrogen as donor atoms
N~N~N Terdentate ligand where the atom donors are Nitrogen
Nalm6 Leukemia cell line
NHC N-Heterocyclic Carbene
NHE Normal Hydrogen Electrode
NMR Nuclear Magnetic Resonance
OLED Organic Light-Emitting Diode
Otf Triflate
P~C(H)~P Ligand with only phosphorous as donor atoms
P~C~P Pincer ligand with phosphorous–carbon–phosphorous as donor atoms
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PDT Photodynamic Therapy
PhMeBIm 1-Phenyl-3-methyl-1H-benzimidazolium
phen 1,10-Phenanthroline
phpyH 2-Phenylpyridine
PMMA Polymethylmethacrylate
ROS Reactive Oxygen Species
SCE Saturated Calomel Electrode
SW480 Colon adenocarcinoma cell line
TAML Tetra-Amido Macrocyclic Ligand
TD-DFT Time-Dependent Density Functional Theory
TOF Turnover Frequency
tterpy 4′-tolyl-2,2′,6′,2”-terpyridine ligand
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