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Abstract: Diabetes mellitus (DM) is cited as a serious worldwide health problem that occupies
second place in causes of annual mortality in Mexico. Among Mexican flora, nearly 300 plant
species have been employed as hypoglycemic in popular use. Thus, their study entertains great
relevance In this context, this work contributes a clear and timely review of the plant species utilized
in Traditional Mexican Medicine and experimental biological models in which not only have the
hypoglycemic properties of the extracts and the isolated compounds been considered, but also
the anti-inflammatory and antioxidant properties, taking into account an integral focus based on
the complex mechanisms involved in the pathogenesis and physiopathology of DM. Among the
species reviewed, we highlight Psacalium decompositum (Asteraceae), due to the potent hypoglycemic,
anti-inflammatory, and antioxidant activity of the sesquiterpenes identified as majority compounds
isolated from the root, such as cacalol and cacalone that also possess the capacity of increasing insulin
levels. In this manner, the present manuscript attempts to contribute necessary information for the
future study of bioactive molecules that are useful in the treatment of DM, as well as also being a
contribution to the knowledge and diffusion of Mexican Traditional Medicine.

Keywords: Mexican medicinal plants; hypoglycemic; Psacalium decompositum; sesquiterpenes; cacalol;
cacalone; diabetes mellitus; antioxidant; anti-inflammatory

1. Introduction

Diabetes mellitus (DM) has been described as a metabolic disorder characterized by
chronic hyperglycemia caused by impaired insulin secretion or impaired insulin action or
both [1,2]. DM is a chronic disease with worldwide relevance in view of its impact on the
general population, in which it is calculated to be the direct cause of the death of approxi-
mately 1.6 million persons worldwide in the year 2016, being the second principal cause of
mortality. The International Diabetes Federation (IDF) refers that, at present, 463 million
persons around the world have diabetes and that this number is increasing. Therefore,
it is projected that, by the year, 2030, this number will have increased to approximately
578 million [1].

DM presents in all age groups regardless of the geographic factor, and it is calculated
that more than 1.1 million children and adolescents under that age of 20 years have type
1 DM worldwide, while 3 of every 4 persons with diabetes (352 millions) are found at
working age (20–64 years). The increase in prevalence implies a demand for guaranteeing
access to specialized medical care, which represents enormous expenses in health, in which,
just for the year 2019, it was estimated that DM signified an expenditure of approximately
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USD 7 billion 60 million dollars. In addition to the latter, DM-associated complications
such as diminished vision or blindness, renal insufficiency, and amputation of the lower
limbs can generate disability, as well as the fact that suffering from DM increases the risk
of cardiopathies, accidents, and myocardial infarcts, causes due to which 50% of patients
with DM have died. Thus, this information points to that complications related with DM
represent strong damage to patients and their relatives in all ambits of life and, of course,
where these represent a considerable economic burden [3].

In the case of Mexico, DM is cited as a grave problem, due to that it continues to
occupy second place in causes of mortality at the national level, registering 104,354 deaths,
which represent 15.7% of total annual deaths according to the report published in October
of that year (2020) by the Mexican National Statistics and Geography Institute [4]. Likewise,
the cost of care for diabetes is estimated as above USD 7.7 billion annually, of which ap-
proximately USD 4 billion were supplied by the Mexican Ministry of Health (SSA), which
cares for the uninsured population; USD 1.2 billion corresponded to the Mexican Institute
of Social Security (IMSS) and to the Mexican Institute of Social Security for Services to State
Workers (ISSSTE), which provide care for the insured population, while USD 1.8 billion
were financed out-of-pocket by the patients themselves and USD 100 million by private
health services. These numbers take into account direct costs (medical diagnostic consulta-
tions, medicines, hospitalization, retinopathies, cardiovascular diseases, nephropathies,
and neuropathies) as indirect expenses (mortality, and temporary or permanent disability)
calculated annually [5]. Therefore, due to the transcendence and magnitude of the illness, in
the year 2016 the SSA declared DM as an epidemiological emergence in the country [6]. For
these reasons, future drugs that can contribute to the control or treatment of DM represent
a possible way of improving the quality of life of patients with DM and of their families,
and of supplying alternatives in the fight against this disease of worldwide relevance, and
especially in Mexican population, which, within a framework of an integral strategy, also
covers educative, psychological, and nutritional aspects with the purpose of preventing
the development of DM and its complications.

Therefore, among the alternatives for the development of novel medicines that are
useful in the treatment of DM, plants are considered an important option, not only due
to their active ingredients that can be isolated, but also because of the acceptance of
persons concerning the use of plants to treat diseases that, according to data reported
by the World Health Organization (WHO), reveal that between 70% and 95% of persons
utilize traditional medicines for primary care throughout the world [7], thus situating
the investigation of plants for the treatment of diabetes as an attractive, immediate, and
necessary activity-to-develop.

1.1. Plants in the Treatment of DM

From ancient times, the use has been reported of plants in the treatment of diabetes. A
large number of plants have been described for the treatment of DM the world over, and
due to the great number of existing ethnobotanical studies, it is difficult to determine the
amount of medicinal species employed empirically in the control of this disease [8].

In Mexico, about 300 plant species from 235 genera and 93 families with hypoglycemic
effects have been reported [9]; however, Escandón-Rivera and coworkers estimate that at
least 800 plants are used for treating DM [10]. The most commonly mentioned families,
according to Andrade-Cetto, are Asteraceae (47), Fabaceae (27), Cactaceae (16), Laminaceae
(9), and Solanaceae y Euphorbiaceae (10). In the majority of cases, evidence of this ac-
tion is based purely on experiences with animals or on their traditional use. The latter,
however, provides only limited information on their clinical potential, in that the use of
hypoglycemic plant remedies is not supported by rigorous clinical assays and requires
additional investigation [11]. Various medicinal plant extracts are frequently employed for
DM in the majority of cultures. Theoretically, medicinal plants can act as hypoglycemic
agents through a prodigious variety of mechanisms. In the case of plants with high fiber
content, the absorption of glucose can be delayed. For herbal remedies, however, this
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appears to be an unlikely mechanism of action. The volume consumed simply is not
sufficient for such an effect. Other remedies can modify the gastrointestinal peptides impli-
cated in the secretion of insulin. Some other possible mechanisms can imply alterations in
insulin sensitivity or in the synthesis of insulin, the inhibition of insulin or its enzymatic
interruption, interference with mitochondrial oxidation, or with gluconeogenesis [12,13].

With regard to phylogenetic distance (which extends from marine algae and fungi
to the higher plants), among each of the families there is a strong indication of the great
variety of active constituents, and chemotaxonomic studies are frequently utilized for the
discovery of plants with novel active ingredients [14].

Prior to the discovery of treatments (synthetic) such as insulin and oral hypoglycemics,
medicinal plants represented the predominant treatments for DM. The hypoglycemic
remedies of plants continue to be frequent in developing countries where, to date, they are
in use in the majority of cases and have been utilized for various centuries. These traditional
treatments are also entertaining notable interest in Western nations. The evidence for these
effects derive from studies with animals; notwithstanding this, the hypoglycemic effects
in animal models are not necessarily transferable to humans, for clinical use, the data of
assays on patients with diabetes and volunteers are essential [15].

Therefore, it is necessary to learn more on hypoglycemics that are natural in origin
and on their mechanisms of action for the discovery of novel substances that can be carried
out systematically. Among the species reported in the literature, only a small part of these
have been experimentally and clinically evaluated to determine their efficacy [16]. On the
other hand, it is noteworthy that some of the traditional remedies can be associated with
a potential risk; for example, Momordica charantia has recently been described as being
hepatotoxic in rats [15].

The great structural diversity of these substances explains the large variety that
could be involved in the decrease in the variety of sugar in the blood. Some of these
compounds may perhaps possess a considerable therapeutic potential, while others perhaps
produce hypoglycemia as a collateral effect of its cytotoxicity, especially those that are
hepatotoxic [16]; however, studies are needed to evaluate these natural compounds in
different molecular targets involved in DM disease. Table 1 shows different groups of
natural products with hypoglycemic effects isolated from Mexican plants, where flavonoids,
aromatic compounds, and terpenoids are the most representative compound groups [10].

Among Mexican plants whose hypoglycemic effect has been demonstrated in different
animal models, but whose active ingredients have not been isolated or characterized,
we find the following: Euphorbia prostate [17], Cuminum nigrum [18], Verbesina persicifolia,
Psacalium decompositum [19], and Agrimonia eupatoria [20].

Table 1. Natural hypoglycemic products isolated from Mexican plants.

Chemical Type # Active Molecules Subtype Reference

Flavonoids 28

Flavonols [21–26]
Flavones [27–31]

Dihydrochalcones [32,33]
Biflavone [30]
Flavanone [34]

Flavan-3-ols [30,35–37]

Aromatic compounds 25

Coumarins [38,39]
Hydroxycinnamic

acids [28,35,40,41]

Chromones [24,42]
Depsides [43]

Phthalides [44]
α-pyrone glycosides [38,39]

Stilbene [45]
Hydroxybenzoic acid [35]
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Table 1. Cont.

Chemical Type # Active Molecules Subtype Reference

Terpenoids 23

Sesquiterpenes [8,28,42,46–51]
Diterpene [30]
Limonoids [52,53]

Cucurbitane [54]
Oleananes [55–57]
Ursarnes [58,59]

Steroids 4 [29,54]
Oligosaccharides 4 [60]

Polyalcohol 1 [61]
# (number) of active molecules is considered according to the report of the studies of 40 hypoglycemic
Mexican plants.

1.2. Diabetes and Traditional Medicine in Mexico

In Mexico, although the use of Traditional Medicine is very frequent in different
regions of the country, this medicine is mainly practiced in rural regions where the popula-
tion is indigenous in its majority. The popular curative practices frequently constitute the
sole health-care option; however, in addition, this practice is carried out in the great urban
centers, such as Mexico City [62].

We know of the traditional indigenous medicine of Mexico through the customs of
the currently marginated groups, where the use of the herbalism is fundamental, although
mineral and animal products are also employed, all of the latter reinforced with religious
devotions honoring their diverse deities [63].

In the XVI century, diseases such as diabetes were not known. The concerns of the
traditional Mexican healers were the symptoms; thus, these were the sole aspects that the
healers treated. Specifically with regard to diabetes, it remained unknown as metabolic
insufficiency, and each of its manifestations continued to be treated separately. It was not
until the end of the XIX and during the XX century that the pathology of the disease was
described, beginning with the use of multiple therapies. Traditional Mexican Medicine
focused its attention on the problem, but did not penetrate deeply into it. On the other
hand, the use of herbalism in the home and in popular healing continued to cure only
the patients’ symptomatology. It was throughout the XX century that academic medical
knowledge on diabetes began to be incorporated into the popular medical culture and,
thanks to the ethnobotanical investigation, the manner was registered in which the Mexican
population referred and treated diabetes [63,64].

By the first third of the XX century, Dr. Maximino Martínez, in his book Plantas Medic-
inales de México, cited the following plants for diabetes: cuajilote; damiana; eucalyptus;
matarique, and tronadora (trumpet flower). At mid-century, Dr. Luis G. Cabrera addi-
tionally recommends avocado, little by little, investigations on Mexican glycemic plants
increased, and the Mexican National Institute of Indigenous Peoples (INI) cites many more,
including cocoyol, prodigiosa, lengua de gallina (chicken tongue), lágrima de San Pedro,
tejocote (Mexican Hawthorne fruit), gobernadora (greasewood), and tronadora [63,64].

In Mexico, persons suffering from diabetes have utilized preparations from traditional
plants (Tables 2 and 3), drinking a glass of the infusion of the juice (whether from the leaves
or the stems, or from the fruit itself) before meals three times a day to obtain a hypoglycemic
effect during the 5 or 6 h afterward [65]. Some of these plants utilized by the population
are edible (Table 3); thus, two very important factors have merged in the treatment of the
disease: their forming part of a good diet, and their possessing a hypoglycemic effect [8].
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Table 2. Mexican plants with experimentally demonstrated hypoglycemic activity.

Scientific Name Botanical
Family Common Name Used Part of the

Plant for Infusion Reference

Acourtia thurberi Asteraceae Matarique Root [8,46,66]
Bauhinia
divaricata Fabaceae Pezuña de vaca Leaves [67]

Bidens odorata Asteraceae Aceitilla Whole Plant [68]
Buddleia

americana Scrophulariaceae Tepozán Leaves [67]

Calea zacatechichi Asteraceae Prodigiosa Stem, Leaves and
Root [67]

Cecropia
obtusifolia Cecropiaceae Guarumbo Leaves [9,40,65,69,70]

Coix lacryma Poaceae Lágrimas de San
Pedro Stem and Leaves [67]

Crataegus
pubescens Rosaceae Tejocote Root [67,71]

Cynodon dactylon Poaceae Grama Stem and Leaves [67,72]
Eriobotrya
japonica Rosaceae Níspero Leaves [65]

Euphorbia
prostrata Euphorbiaceae Golondrina Whole Plant [17,64]

Guaiacum coulteri Zygophyllaceae Guayacan Stem [67]
Guazuma
ulmifolia Malvaceae Guacima Leaves [64,73,74]

Lepechinia
caulescens Lamiaceae Salvia Flowers [64,65,75]

Marrubium
vulgare Lamiaceae Marrubio Stem, Leaves and

Root [67,76]

Musa sapientum Musaceae Plátano Fresh Flowers [64]
Psacalium

decompositum Asteraceae Matarique Root [48,77–79]

Psacalium
peltatum Asteraceae Matarique Root [65,80–82]

Psittacanthus
calyculatus Loranthaceae Muérdago Stem, Leaves and

Flowers [83]

Rhizophora
mangle Rhizophoraceae Mangle rojo Stem [37,64]

Salpianthus
macrodonthus Nyctaginaceae Catarinilla Stem and Leaves [65]

Solanum
verbascifolium Solanaceae Malabar Stem and Leaves [65]

Tecoma stans Bignoniaceae Tronadora Stem and Leaves [65,74,84]
Teucrium cubense Lamiaceae Agrimonia Stem and Leaves [65,84]

Tournefortia
hirsutissina Heliotropiaceae Lágrimas de San

Pedro Stem [64,85]

Trigonella
foenum-graecum Fabaceae Paracata Leaves [64,86]

Turnera diffusa Passifloraceae Damiana Leaves [49,64]

Among the edible plants that have shown experimentally to diminish blood glucose
levels, we find cucumber (Cucumis sativus), chilacayote (Cucurbita ficifolia), cumin (Cuminum
cyminum), nopal (prickly pear cactus, Opuntia streptacantha), bean (Phaseolus vulgaris), and
spinach (Spinacea oleracea). A patient with diabetes should implement a dietary regimen
utilizing edible plants and, in this manner, improve their diet and control, in part, the
disease [87].
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Table 3. Edible Mexican plants with experimentally demonstrated hypoglycemic activity.

Scientific Name Botanical
Family Common Name Used Part of

the Plant Reference

Cuminum
cyminum Apiaceae Comino Seed Infusion [87,88]

Cucumis sativus Cucurbitaceae Pepino Fruit Juice [87,89]
Cucurbita ficifolia Cucurbitaceae Chilacayote Fruit Juice [87,90–93]

Opuntia
streptacantha Cactaceae Nopal Stem Juice [87,94,95]

Phaseolus
vulgaris Fabaceae Fríjol Sheath Infusion [87,96]

Spinacea oleracea Amaranthaceae Espinaca Leaves Juice [87]

It is thought that a patient with this control potentially reduces the dose of hypo-
glycemic ingredients agent that the patient ingests; even patients with mild, non-insulin-
dependent diabetes will avoid the use of these agents. Some of the reasons that support the
use of edible plants is due to that synthetic hypoglycemic agents can have serious adverse
effects, including hematological, cardiovascular, and gastrointestinal reactions, such as
hypoglycemic and damage to the skin and liver; in addition, its use is not recommended
during pregnancy. These non-edible plants utilized, such as antidiabetics, can entertain the
same limitations, which does not occur with edible plants [87].

The importance of knowing the mechanism by which blood glucose levels diminish
lies in that many compounds can be hepatotoxic agents that can exert an influence on the
activity of some hepatic enzymes related with gluconeogenesis and that, at the moment of
studying these, they can result in a false-positive result [16].

Aguilar and Xolalpa published, in the year 2002, a compilation of popularly utilized
plants employed as hypoglycemic in Mexican population; these authors registered a total
of 179 species belonging to 68 botanical families, among which the Asteraceae, Cactaceae,
and Fabaceae families are the most representative. Similarly, these authors found that the
leaves are the most used plant structures, followed by the stems and the roots. On this list,
we find Matarique (Psacalium decompositum), that belongs to the Asteraceae family, which
is also a subject of revision of this work.

1.3. Psacalium decompositum (A. Gray) H. Rob & Brettell

In Mexico, commonly used medicinal plants have been divided into complexes be-
cause they share characteristics in common, whether it be the name, the morphophysi-
ological characteristics, the aromatic characteristics, or due to their traditional use. The
Matarique complex comprises various species, among which we can highlight Psacalium
decompositum, Psacalium peltatum, Psacalium sinatum, and Acourtia thuberi. Psacalium decom-
positum (Cacalia decomposita, Odontotrichum decompositum) is a perennial plant found in the
pine-oak forests of the Sierra Madre Occidental mountain range in northeastern Mexico
(Figure 1), where it is also known as Matarique or as pitcáwi (Tarahumara), a wild, land
plant, in association with pine-oak forests. It grows from 30 cm–1.6 m in height. The stems
are almost woody, densely hairy or hirsute at the base, with brown hairs. The simple basal
leaves, alternating in rosettes, sub-orbicular, up to 40 cm in length, coriaceous in consis-
tency, hirsute, with a deeply lobed margin, a peltate base, with a petiole (stalk), and with
long, subpeltate cauline leaves that are smaller in size than the basal leaves. The flowers
are hermaphroditic, with a sympetalous corolla, with the color of the flowers ranging from
cream to brown. These flowers possess a thick fibrous rhizome. This plant is distributed in
mountainous zones; however, it is best known in the Sierra Madre Occidental mountain
range and in the center of the country of Mexico. This species originated in Mexico and
grows in a semi-dry climate between 1950 and 2050 m above sea level (m asl) [97].
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Figure 1. Sesquiterpenes isolated from P. decompositum: cacalol (1), cacalone (2), maturin (3), maturinone (4), maturone (5),
epicacalone (6), dimaturin (7), cacalol acetate (8), 3-hydroxycacalolide (9), epi-3-hydroxycacalolide (10).

It is considered a threatened species. Surveys in the northern region of the country cite
that its frequency has become noticeably reduced. Due to its hypoglycemic property, the
species has been over-collected due to its commercialization and, at present, its populations
are found in danger of extinction at the local level. With regard to the medical element, the
aerial part of Psacalium decompositum is utilized to cure rheumatism, tumors, ulcers, fever,
skin infections, toothache, diabetes, kidney diseases, and gastrointestinal and rheumatic
pain. The root, in the form of a tea or an herbal infusion is employed against malaria, fever,
diabetes, tumors, ulcers, rheumatism, kidney diseases, skin infections, and toothache. The
crushed roots are utilized to treat snakebite, as well as for toothache, placing a piece of the
root on the tooth with caries [97].

1.4. Bioactive Components of Psacalium decompositum

Román et al. (1992) demonstrated that the aqueous and methanolic extracts of the root
present hypoglycemic activity. In the root, the following metabolites have been identified:
cacalol (1), cacalone (2), maturin (3), maturinone (4), and maturone (5) (Figure 1), which
are those most abundant in the sesquiterpenes in the root [48].

In 1998, Inman et al. described the properties of epicacalone (6), cacalone (2), cacalol
(1) and dimaturin (7) (Figure 1) as hypoglycemic agents. The authors observed that these
compounds administered by oral route significantly reduced plasma glucose levels em-
ploying a C57BL-6J ob/ob genetically obese and diabetic mouse model. These authors also
developed a patent on the application of furanoeremophilanes and furanoeremophilane
sesquiterpenes in the treatment of DM. Due to the fact that bioactive compounds usually
are found in small amounts, it is convenient to carry out the chemical synthesis of these
compounds; this is the case of cacalol (1) where more than ten methods of synthesis of this
compound have been described. Thus, cacalol (1) can be obtained in the laboratory in gram
quantities [98–104].

Alarcón-Aguilar et al., for their part in the year 2000, reported that the aqueous extract
significantly reduces blood glucose levels dose-dependently in normal mice, administered
intraperitoneally (i.p.). However, on testing the major sesquiterpene of the root cacalol (1),
cacalone (2), and maturin (3), and the transformed product of cacalol (cacalol acetate) (8),
the authors observed that these did not show a hypoglycemic effect on injecting them i.p.
in the same model [48]. It is noteworthy that the contradictory results can be due to that
each group employed a different animal model.
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Prior studies conducted on P. decompositum have led to the isolation and structural
studies of eremophilanes, which exert effects on the growth and development of Amaranthus
hypocondriacus and Echinocloa crusgalli [105].

It has been observed that the aqueous acetate extracts were obtained from phytopathogenic
fungi, principally in the growth of Alternaria, Pythium, Fusarium, and Helminthosporium. Thus,
this has been proposed as an herbicide and as a natural selective fungicide [105].

The antimicrobial activity has also been proven of the metabolic, hexanic, and ethyl-
acetate extracts of the root by means of the antibiogram method, finding that the extracts
possess effects on Candida albicans, Cryptococcus neoformans, Staphylococcus aureus, and
Streptococcus pyogenes [106]. Additionally, in the same study, it has demonstrated that
among the hexanic extracts of the roots, cacalol (1) is the most abundant metabolite,
and that also possess antimicrobial activity against Staphylococcus aureus, Escherichia coli,
Pseudomonas aeruginosa, and Proteus mirabilis [106].

The chemical characterization of the metabolites contained in the roots and rhizomes
of P. decompositum has demonstrated that their main composition consists of sesquiter-
penoids such as cacalol (1), cacalone (2), maturin (3), epicacalone (6), 3-hydroxycacalolide
(9), and epi-3-hydroxycacalolide (10) (Figure 1) [8,48]. Diverse studies report the hypo-
glycemic activity of the decoction of the roots [8], as well as of the fractions that contain
fructooligosaccharides [78]. Notwithstanding this, as we have previously referred, DM
is a complex disease in which the hypoglycemic action and the anti-inflammatory and
antioxidant activities acquire great relevance, as do the possible hypolipidemic effects.
Currently, studies have been initiated for the evaluation of these properties [107]. Re-
ported a reduction in the levels of cholesterol and triglycerides, as well as a decrease in
the body weight of rats utilized as experimental model when these were administered
150 mg/kg/day during 12 weeks of fructooligosaccharides obtained from the decoction of
P. decompositum roots. In that same study, the authors observed novel anti-inflammatory
properties due to the decrease in the levels of proinflammatory interleukins such as IL-6
and IL-1β, as well as the levels of IFN-γ, MCP-1, and VEGF, in which the latter are im-
plicated in the development of insulin resistance and cardiovascular problems, among
others. On the other hand, previous studies have evaluated the anti-inflammatory prop-
erties of the hexanic extract and its compounds cacalol (1) and cacalone (2), the latter
obtained from the roots and rhizomes in two distinct assays: carrageenan-induced rat-paw
edema, and TetradecanoPhorbol Acetate (TPA)-induced ear edema. Despite that in both
assays the authors observed dose-dependent, anti-inflammatory effects, the hexane extract
demonstrated significant action in the carrageenan test, while that of cacalone (2) was the
most potent effect in both assays) [108]. These results coincide with those reported by
Bakirel and coworkers [109], in which the methanolic extract of P. decompositum reduced
the expression of the cytokines IL-1β, IL-6, and IL-8. In a recent report, the cacalol acetate,
which is the most stable form of cacalol (1), was the object of an investigation with the aim
of evaluating its anti-inflammatory properties and determining its possible participation
in the NF-κB transcription factor signaling pathway. The results point out that the cacalol
extract regulates the NF-κB signaling pathway, participating in the decrease of its activation,
thus inhibiting a large number of inflammation mediators, thus reducing the inflamma-
tory process in the generation of edema. In this manner, the participation of the natural
products obtained from P. decompositum continues to contribute novel anti-inflammatory
mechanisms that could establish the bases for new and future drugs [110].

Regarding the possible antioxidant properties of P. decompositum, of cacalol (1) as well
as of cacalone (2), these have been reported as natural antioxidants, and a recent study
indicates that cacalol (1) was capable of inhibiting the production of Reactive Oxygen
Species (ROS) in bone marrow-derived mastocytes [111].

Nonetheless, in the case of P. decompositum and its sesquiterpenoids, and to our
knowledge, the information on its antioxidant properties in diabetic animal models
remains scarce.
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1.5. Experimental Models for the Study of Plants with Hypoglycemic Activity

The most common models for inducing diabetes in experimentation animals are the
treatments with Alloxan or Streptozotocin. Alloxan is a compound that possesses an affinity
for ß cells, rendering it a good model for the study of DM. Notwithstanding this, it also
presents some complications, such as the impossibility of establishing a relation between
the dose of Alloxan and the effective concentration in the pancreas for the development of
diabetes; it is difficult to determine the adequate concentration of Alloxan that inhibits the
cells without producing necrosis [112].

Other commonly employed compounds for this purpose include the following: uric
acid; dehydroascorbic acid; some quinolones; 2,4-dinitrophenol; diazoxide; some magne-
sium salts, and hormones such as epinephrine, glucagon, corticotropin, somatotropin, and
pituitary extract [112].

The techniques used for the study of hypoglycemic activity in vivo are based in the
use of normoglycemic and hyperglycemic animals (rat, mouse, and rabbit). Numerous
techniques in vitro have been developed to determine the variety of mechanisms of action
of the hypoglycemic agents discovered by means of assays in vivo. The following different
aspects of the hypoglycemic response are commonly studied in vitro: the release of insulin
from the pancreatic islets; the availability of peripheral insulin; the utilization of glucose,
and the effect on hepatic enzymes [113].

Streptozocin causes the degeneration of pancreatic ß cells. This can be due to that
Streptozocin induces an alteration in the mitochondrial function of the pancreatic islets. It
is a compound of natural origin isolated from Streptomyces achromogenes [113].

The mechanism of some sulfonylureas at the cellular and subcellular levels has been
determined through ß-cell cultures. Additionally, the role of the liver in diabetes has
been studied in hepatocyte cultures of rat. Recently, human hepatomas have been used
to study insulin receptors. Hikino and collaborators have determined a large number of
mechanisms of hypoglycemic agents isolated from plants with a preparation of different
hepatic enzymes [114].

1.6. Experimental Models for the Study of Plants with Anti-Inflammatory and Antioxidant
Activity in Diabetes

Despite that hypoglycemic activity has been the focus-of-study for plants that have
been traditionally utilized for the treatment of DM, at present there is ample evidence
that shows the enormous complexity of the mechanisms involved in the pathogenesis
and physiopathology of DM and its complications, such as the processes of chronic in-
flammation and oxidative stress [115]. Thus, in addition to the experimental models that
evaluate the hypoglycemic activity of plants, in recent years models have been added that
evaluate the anti-inflammatory and antioxidant properties of plants, with the purpose
of providing integral information and of offering new knowledge on the possible and
varied effects that the plants could supply on different targets-of-action for impacting a
disease as complex as DM. In this manner, inflammation could be considered acute and
chronic when the inflammatory response occurs in three distinct stages. The first stage
is caused by an increase in the vascular permeability for the exudation of fluids in the
interstitial space, while the second stage involves infiltrations of leukocytes from the blood
into the tissues. The third stage refers to the formation of granuloma formation and tissue
repair. The inflammatory response represents a complex biological and biochemical that
involves immune-system cells and mediators. The mediators of the inflammatory processes
are varied, but are generally recognized by ProstaGlandins (PG), LeukoTrienes (LTB4),
Nitric Oxide (NO), the Platelet Activation Factor (PAF), bradykinins, serotonins, lipoxins,
cytokines, and growth factors [116].

With respect to the antioxidant processes involved, recent evidence suggests that a
sustained state of hyperglycemia can cause grave cellular damage through the oxidative
stress, and that in a chronic progression, the latter could implicate the possible pathogenesis
of the complications associated with DM. Thus, some authors suggest the identification of
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very specific biochemical changes caused by the hyperglycemia and that could be key, given
the over-production of superoxide radicals. Therefore, these changes and their involved
molecules represent possible targets-of-action for antioxidant molecules deriving from
plants. These changes and possible targets-of-action comprise the following: an increase
of fluid through the polyol pathway, reducing the levels of NADPH; an increase in the
formation of the end products of Advanced Glycation End-products (AGE); an activation
of protein kinase C, and an increase in the derivation of the excess of glucose through the
Hexosamine Synthetic Pathway (HSP) [117].

Although there are a broad variety of reports in the literature on experimental animal
models for the study of the anti-inflammatory and antioxidant properties of plants, it has
only been during the past decade that the evaluations of these properties in experimental
models of animals with induced diabetes were mainly initiated. The latter has the pur-
pose of offering specificity and a panorama on DM, as well as overcoming the technical
challenges of experimentation on working with plant-derived substances, such as the
administration of extracts or factions, which are not always easy to manage in animal mod-
els. Thus, Table 4 attempts to contribute information on experimental models in diabetic
animals utilized specifically for the evaluation of plant-derived natural products, such as ex-
tracts, fractions, or compounds. Therefore, subsequently, Table 4 presents the plant-derived
substances that were evaluated, as well as the diabetic animal model employed.

Table 4. Experimental models for the study of the anti-inflammatory and antioxidant properties of plants related with DM.

Biological
Target Name of the Assay Plant Species/Part of the Plant

Used or Active Molecule

Diabetic Animal
Model/Doses of the
Plant Used

Reference

Acute
inflammation

Carrageenan and
histamine-induced
paw edema

Passiflora edulis
(Passifloraceae)/Flour fruit peel;

Alloxan induced diabetic
mice/0.5–25 mg/kg;

[118–121]Harungana madagascariensis Alloxan induced diabetic
rats/25, 50 and 100 mg/kg;

(Hypericaceae)/Stem-bark
ethanolic extract;

STZ induced diabetic
rats/100 mg/kg;

Eugenia
uniflora(Myrtaceae)/Methanolic
extract of leaves;

STZ induced diabetic
mice/25–1600 mg/kg;

Sclerocarya birrea
(Anacardiaceae)/Aqueous
stem-bark;

Xylene-induced ear
edema thickness
and weight

Typha orientalis
(Typhaceae)/Polysaccharides
of pollen;

STZ induced diabetic rats/0.1,
0.2 and 0.4 g/kg; [122,123]

Pyrus bretschnrideri, P. communis,
P. ussuriensis (Rosaceae)/Peel
and pulp

STZ induced diabetic
mice/500 mg/kg

Myeloperoxidase
(MPO)

Kaempferol-3,7-O-(α)-
dirhamnoside;

Alloxan induced diabetic
rats/50, 100 and 200 mg/kg;

[124–126]Withania coagulans
(Solanaceae)/Aqueous
fruit extract;

STZ induced diabetic
rats/10 mg/kg;

Oleuropein/ Alloxan induced diabetic
rats/15 mg/kg

Chronic
inflammation

Cotton
pellet-induced
granuloma

Zingiber officinale
(Zingiberaceae)/Aqueous extract;
Bridelia micrantha
(Phyllantaceae)/Methanolic
extract of leaves

STZ induced diabetic
mice/100, 200 and 400 mg/

[127,128]100 mL;
STZ induced diabetic rats/100,
200 and 400 mg/kg
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Table 4. Cont.

Biological
Target Name of the Assay Plant Species/Part of the Plant

Used or Active Molecule

Diabetic Animal
Model/Doses of the
Plant Used

Reference

Antioxidant
in vitro activity

Diphenyl-picryl-
hydrazyl radical
scavenging

Pyrus bretschnrideri, P. communis,
P. ussuriensis (Rosaceae)/Peel
and pulp;

STZ induced diabetic
mice/500 mg/kg;

[123,124,129–131]

(DPPH) Kaempferol-3,7-O-(α)-
dirhamnoside;

Alloxan induced diabetic
rats/50, 100 and 200 mg/kg;
Alloxan induced diabetic
rats/200 and 500 mg/kg;
Alloxan induced diabetic
rats/80 mg/kg;

Cyperus rotundus
(Cyperaceae)/Ethanol extract of
rhizomes; Cecropia pachystachya
(Urticaceae)/Methanol extract
of leaves;

STZ induced diabetic
mice/200 mg/kg

Smallanthus sonchifolius
(Asteraceae)/Tuber extract and
chlorogenic acid

Oxygen radical
absorbance capacity
(ORAC)

Eugenia uniflora
(Myrtaceae)/Aqueous extract; NOD mice/0.06 g/100 mL;

[132–134]Passiflora alata
(Passifloraceae)/Aqueous leaves
extract;

NOD mice/15 g leaf/L;

Grape pomace extract STZ induced diabetic
rats/400 mg/kg

Trolox equivalent
antioxidant
capacity (TEAC)

Lycium barbarum
(Solanaceae)/Fruit water
decoction;

Alloxan induced diabetic
rabbits/0.25 g/kg and
10 mg/kg; db/db (+/+)
C57BL/KsL mice/5% of
the diet

[135,136]

garlic and aged black
garlic/water extract

Ferric reducing
antioxidant power
(FRAP)

Morus alba (Moraceae)/leaves;
STZ induced diabetic rats/6
and 22 mg/g HF diet; NOD
mice/15 g leaf/L; [132,133,137]

Passiflora alata
(Passifloraceae)/Aqueous
leaves extract;

NOD mice/0.06 g/100 mL

Eugenia uniflora
(Myrtaceae)/Aqueous extract;

Superoxide anion
radical scavenging
(SOD)

Annona squamosal
(Annonaceae)/Aqueous extract;

STZ induced diabetic
rats/300 mg/kg;

[138–140]Calotropis gigantea
(Asclepiadaceae)/chloroform
extracts of leaf and flower;
Emblica officinalis

STZ induced diabetic rats/10,
20 and 50 mg/kg;

(Phyllanthaceae)/Hydromethanolic
extract of leaves

STZ induced diabetic rats/100,
200, 300 and 400 mg/kg

Hydroxyl radical
scavenging

Cyperus rotundus
(Cyperaceae)/Hydroethanolic
extract;

Alloxan induced diabetic
rats/200 and 500 mg/kg; [129,141]

Moringa oleifera
(Moringaceae)/Ethanolic
leaf extract

C57BLKS/J
Iar-+Leprdb/+Ledprdb
mice/150 mg/kg
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Table 4. Cont.

Biological
Target Name of the Assay Plant Species/Part of the Plant

Used or Active Molecule

Diabetic Animal
Model/Doses of the
Plant Used

Reference

Nitric oxide radical
scavenging

Euphorbia hirta
(Euphorbiaceae)/Ethanolic and
petroleum ether flower extracts;

Alloxan induced diabetic
mice/250 and 500 mg/kg; [142,143]

Syzygium mundagam
(Myrtaceae)/Petroleum ether,
ethyl acetate, methanol and hot
water extracts of bark

STZ induced diabetic rats/250
and 500 mg/kg

Total phenolic
content

Grape pomace extract; STZ induced diabetic
rats/400 mg/kg; [134,144]

Euphorbia hirta
(Euphorbiaceae)/Petroleum
ether, chloroform and ethyl
acetate extracts of aerial parts

STZ induced diabetic
mice/500 mg/kg

Metal chelating
activity

Syzygium mundagam
(Myrtaceae)/Petroleum ether,
ethyl acetate, methanol and hot
water extracts of bark;

STZ induced diabetic rats/250
and 500 mg/kg; [143,145]

Cinnamomum tamala
(Lauraceae)/Oil of leaves

STZ induced diabetic rats/100
and 200 mg/kg

Hydrogen peroxide
(H2O2) radical
scavenging

Achyranthes aspera
(Amaranthaceae)/Ethanolic
extract of stem and leaves;

Alloxan induced diabetic
mice/200 and 400 mg/kg; [145,146]

Cinnamomum tamala
(Lauraceae)/Oil of leaves

STZ induced diabetic rats/100
and 200 mg/kg

Reducing power
(RP)

Euphorbia hirta
(Euphorbiaceae)/Ethanolic and
petroleum ether flower extracts;

Alloxan induced diabetic
mice/250 and 500 mg/kg;
Alloxan induced diabetic
mice/200 and 400 mg/kg

[142,146]

Achyranthes aspera
(Amaranthaceae)/Ethanolic
extract of stem and leaves

Total flavonoid
Grape pomace extract; STZ induced diabetic

rats/400 mg/kg;
[134,147,148]Hybanthus enneaspermus

(Violaceae)/Alcoholic extract;
STZ- induced diabetic rats/250
and 500 mg/kg;

Aloe barbadensis
(Asphodelaceae)/Ethanolic skin
leaves extract

STZ- induced diabetic
rats/1.25 g/kg

Xanthine oxidase

Croton cajucara
(Euphorbiaceae)/Aqueous
extract of bark;

STZ- induced diabetic
rats/1.5 mL i.g.;

[149,150]
Pimpinella tirupatiensis
(Apiaceae)/Aqueous extract of
tuberous root

STZ- induced diabetic
rats/750 mg/kg

Conjugated diene

Helicteres isora
(Sterculiaceae)/Aqueous extratc
of bark;

STZ- induced diabetic rats/100
and 200 mg/kg; [151,152]

Salmalia malabarica
(Malvaceae)/Hydromethanolic
extract of sepals

STZ- induced diabetic
rats/20 mg/0.5 mL distilled
water/100 g

Phosphomolybdenum
method

Scoparia dulcis
(Plantaginaceae)/Ethanolic
extract of aerial parts;

Alloxan induced diabetic
mice/100 and 200 mg/kg;
Alloxan induced diabetic
rats/ppm

[153,154]

Satureja khuzestanica
(Lamiaceae)/Oil of aerial parts
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Table 4. Cont.

Biological
Target Name of the Assay Plant Species/Part of the Plant

Used or Active Molecule

Diabetic Animal
Model/Doses of the
Plant Used

Reference

Cytochrome tests

Averrhoa bilimbi
(Oxalidaceae)/Aqueous soluble,
butanol soluble, ethyl acetate and
hexane fractions of ethanolic
leaf extract;

STZ- induced diabetic
rats/125 mg/kg;

[155,156]

Averrhoa bilimbi
(Oxalidaceae)/Aqueous and butanol
f ractions of ethanolic leaf extract

STZ- induced diabetic
rats/125 mg/kg;

Erythrocyte ghost
systems

α-eleostearic acid and
punicic acid;

STZ- induced diabetic
rats/0.5% of the total lipid
given for each isomer; [157,158]

Sesbania grandiflora
(Fabaceae)/Methanolic extract of
flowers

STZ- induced diabetic
rats/250 mg/kg

Ferric thiocyanate
(FTC)

Momordica charantia
(Cucurbitaceae);

STZ- induced diabetic
rats/20 mg/kg; [159,160]

Aqueous extract of the fruit;
Cleome rutidosperma
(Cleomaceae) and Senecio biafrae
(Asteraceae)/Petroleum ether,
acetone, ethanol, and aqueous
extract of aerial parts

STZ- induced diabetic
mice/500 mg/kg

Thiobarbituric acid
(TBARs)

Morus alba (Moraceae)/leaves;
Morus alba;
(Moraceae)/Hydroethanolic
extract of leaves;

STZ- induced diabetic
rats/0.25, 0.5 and 1 g/kg;

[161–164]
Linum usitatissimum
(Linaceae)/Aqueous extract of
the seed;
Alnus nitida
(Betulaceae)/Methanol, hexane,
chloroform, ethyl acetate and
soluble residual aqueous
fractions of leaves

STZ induced diabetic rats/6
and 22 mg/g HF diet; Alloxan
induced diabetic mice/1 mL
of extract;

Alloxan induced diabetic
rats/100 and 200 mg/kg

Antioxidant
in vivo activity

Reduced GSH
activity

Emblica officinalis STZ induced diabetic rats/100,
200, 300 and 400 mg/kg;

[125,140](Phyllanthaceae)/
Hydromethanolic extract
of leaves;

STZ induced diabetic
rats/10 mg/kg

Withania coagulans
(Solanaceae)/Aqueous
fruit extract

Estimation of MDA

Teucrium polium
(Lamiaceae)/Aqueous extract;

STZ- induced diabetic
rats/0.5 g/kg;

[125,161,162]Withania coagulans
(Solanaceae)/Aqueous
fruit extract;

STZ induced diabetic
rats/10 mg/kg;

Psacalium peltatum
(Asteraceae)/Aqueous fraction
with fructan content of
roots extract

STZ induced diabetic
mice/200 mg/kg
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Table 4. Cont.

Biological
Target Name of the Assay Plant Species/Part of the Plant

Used or Active Molecule

Diabetic Animal
Model/Doses of the
Plant Used

Reference

Ferric reducing
ability of plasma

Nigella sativa
(Ranunculaceae)/Methanolic
extract of seed, and oil;

Alloxan induced diabetic
rats/270 and 810 mg/kg;
2.5 mL/kg of oil; [163,164]

Camellia sinensis
(Theaceae)/Hydromethanolic
extract

STZ- induced diabetic
rats/3 mg/L

Catalase (CAT)

Calotropis gigantea
(Asclepiadaceae)/Chloroform
extracts of leaf and flower;

STZ induced diabetic rats/10,
20 and 50 mg/kg;

[139,165–167]
Bacopa monnieri (Plantagi-
naceae)/Hydroethanolic extract
of aerial parts;
Toddalia asiatica
(Rutaceae)/Hexane, ethyl acetate
and methanol extract of leaves;

STZ induced diabetic rats/125
and 250 mg/kg;

Coffea arabica
(Rubiaceae)/aqueous extract of
green beans

STZ induced diabetic rats/250
and 500 mg/kg;
STZ induced diabetic01
rats/50 mg/kg

Glutathione
reductase (GR)

Punica granatum
(Lythraceae)/Peels extract;

STZ- induced diabetic rats/10
and 20 mg kg−1;

[168,169]Zingiber officinale
(Zingiberaceae)/Ethanolic
extract

STZ- induced diabetic
rats/200 mg/kg

Lipid peroxidation
(LPO)

Rosmarinus officinalis
(Lamiaceae)/Ethanolic extract;

STZ- induced diabetic
rabbits/50, 100 and
200 mg/kg; [170,171]

Phyllanthus niruri
(Phyllanthaceae)/Aqueous
extract of leaves

STZ- induced diabetic rats/200
and 400 mg/kg

LDL assay

Bauhinia orficata
(Fabaceae)/Aqueous, hexane
and methanol extract of leaves;

Alloxan induced diabetic
rats/200 and 400 mg/kg; [172,173]

Vernonia amigdalina
(Asteraceae)/Aqueous extract of
leaves

STZ- induced diabetic
rats/200 mg/kg

2. Discussion

Due to DM is a disease that affects the worldwide population and exerts a great
impact on diverse aspects, such as economic, social, familial, etc., information on matters
of plants that yield new molecular structures with possible pharmacological effects for the
treatment of DM is regarded as pressing. Among the plants that during the last decades
have been studied in terms of their possible effects on DM, we find that P. decompositum is
highlighted. The chemical characterization of the metabolites contained in the roots and
rhizomes mainly consists of sesquiterpenoids such as cacalol (1), cacalone (2), maturin (3),
epicacalone (6), 3-hydroxycacalolide (9), and epi-3-hydroxycacalolide (10) [8,48]. Cacalol as
well as cacalone have exhibited potent hypoglycemic properties and the capacity of increas-
ing insulin levels, as well as anti-inflammatory and antioxidant properties [78,108,111].
Thus, these sesquiterpenes are situated as the most outstanding of the species and result
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in being of utmost interest for continuing their study in possible models in vivo, in order
to determine their potential integral pharmacological effects on DM. In this sense and
given that the aqueous extract of P. decompositum has shown a hypoglycemic effect, the
interaction of cacalol and cacalone with other components of the extracts and their possible
potentialization, should also be explored. In this point, since the hypoglycemic effect of the
Matarique involves also the presence of pyrrolizidine-type alkaloids, which are hepatotoxic
components of different plant species [48], it is necessary to carry out toxicological evalua-
tions in order to establish the mechanisms of action of these sesquiterpenes and guarantee
their safety. Thus, modifications to the chemical structure of the sesquiterpenes isolated
from P. decompositum could improve their properties on DM treatment, as well as reduce
the original toxicity and adverse effects.

On the other hand, cacalol is also an important antioxidant, very sensitive to oxi-
dation due the presence of the alcohol group and furan ring [174]. Although an excess
of antioxidants can produce a pro-oxidant effect, it has been proven that the acetylation
of cacalol maintains the original scavenging of free radicals, which ensures its use as an
antioxidant factor [175]. Additionally, cacalol acetate, more stable than cacalol, possesses
anti-inflammatory properties that regulate the NF-kB signaling pathway through a de-
crease in the phosphorylation of IKB-α and p65, as well as the reduction in the expression
of TNF-α, IL-1β, and IL-6, thus also offering an option in future interesting investigations,
despite that a partial study did not exhibit hypoglycemic properties [48]. Nonetheless, as
mentioned previously, perhaps its evaluation in more precise and updated models would
offer new information. At any rate, the anti-inflammatory effect exhibited by cacalol acetate
is per se an innovative mechanism of action [111] that requires more study, as does its
possible combinations with other substances. On the other hand, given that P. decompositum
forms part of a complex of plants denominated Matarique and that are traditionally utilized
in Mexico for treating DM, it is interesting that another species belonging to such a complex,
and of the same genus, P. peltatum, and from which an aqueous fraction was obtained with
fructane content, has demonstrated an hypoglycemic effect and anti-inflammatory and
antioxidant effects on Streptozotocin-induced diabetic mice [162] (Table 4). The latter situ-
ates it as a highly interesting species in the area of investigation in DM, due to this integral
and candidate effect in later studies. In the same fashion, another species belonging to the
same genus, P. paucicapitatum, a species endemic to Mexico, exhibited anti-inflammatory
properties and a hypoglycemic effect in vivo on C57BL/6 mice when the aqueous extract
with fructooligosaccharide content was evaluated [176].

Therefore, with the latter provided information, the species belonging to the Psacalium
genus represents a potential hypoglycemic source with possible anti-inflammatory and
antioxidant properties that could be utilizable in the future for the treatment of DM, and
for which scientific information is scarce to date.

In addition, it is important to note that some triterpenes have been exerted a hypo-
glycemic effect, which prevent or help to prevent diabetic complications such as nephropa-
thy or neuropathy, restoring the healing capacity [177]. This becomes highly relevant
because uncontrolled blood glucose levels increase the chances of a viral infection, since
DM is one of the main comorbidities [178] in the infection, development and worsening of
COVID-19 [179]. Recent reports in China [180], Italy, and Mexico [181–183] have revealed
that older patients with chronic diseases, especially DM, display a higher probability for
contracting a severe condition in COVID-19 disease and that frequently, this leads to fatal
consequences. Some of the mechanisms probably involved in the susceptibility to COVID-
19 by patients with DM include: high affinity for binding the virus to the cell and efficient
entry, decreased function of T cells, increased of susceptibility to hyperinflammation and
cytokine storm syndrome, and the presence of cardiovascular diseases [184]. Consequently,
the current pandemic caused by the SARS-CoV-2 virus, place the pharmacological agents
available for treatment of DM as priority. In this way, with the absent of an effective treat-
ment for COVID-19 and specially in DM patients, treatments using medicinal plants and
their metabolites cannot be ruled out [185], either as enhancers of the immune system [186],
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as adjuvants in the management of diabetes [187] and as competitors/inhibitors of the
receptors involved in SARS-CoV-2 infection [188]. Even more, recent reports indicated that
terpenes could also inhibit some enzymes involved in the SARS-CoV-2 viral replication
cycle [189].

In this sense, and one more time, as other authors have cited in previous studies, the
study of Mexican plants for the treatment of DM continues to be found under development
and is defining as many study approaches as strategies, which would imply more than
one target, due not only to the complexity of the processes implicated in DM, as we have
explained herein, but also because the possible future drugs with multiple actions could
exert long-term impacts on other relevant aspects to consider, such as, for example, the
increase in the adherence of the patient to the pharmacological treatment, but also an impact
on the patient in terms of needing to purchase a sole drug, rather than many, and facilitation
of control of comorbidities [10]. Therefore, once again, the study of Mexican plants for
the treatment of DM stands out as an attractive source of compounds-to-explore, not only
because of their registered ethnobotanical antecedents, but also because of the possibility of
interaction on the distinct physiological targets implicated in DM in any of its stages, and
the potential possibility of using these at the same time with other drugs that are currently
prescribed for the treatment of DM. Table 4, which is elaborated in the present work, could
be useful as a point of departure for the approach of future investigations that focus not
only on the hypoglycemic properties of the plants, but also on the anti-inflammatory and
antioxidant properties of the latter in relation to the treatment of DM.

3. Conclusions

The study of medicinal plants for the treatment of DM continues to be of great interest
due to the possibility of the discovery of novel and diverse molecules that could be
developed as utilizable therapeutic agents in this illness that exerts an impact worldwide.
In the present review, the natural products obtained from plants are shown that have
been employed in the treatment of DM, and particularly the plants used traditionally
in Mexico, where DM is a serious health problem, as well as the anti-inflammatory and
antioxidant experimental models in diabetic animals specifically utilized in plants that
could be useful for future investigations of the multiple effects implicated in DM. Some
species, such as Psacalium decompositum, whose extracts and isolated compounds, such as
cacalol and cacalone, have revealed potent acute hypoglycemic effects and also influences
on the increase of insulin, as well as anti-inflammatory and antioxidant effects, situate this
species as a strong candidate for the development of a phytodrug useful in the treatment
of DM. These sesquiterpenes are situated as the most outstanding of the species and
result in being of utmost interest for continuing their study in possible models in vivo, in
order to determine their potential integral pharmacological effects on DM. In the same
way, to ensure the administration of cacalol and its derivatives, it is essential to deepen
in toxicological studies considering the structural modifications for improvement the
biological effects.

This information provides encouragement for future investigations that contribute to
the understanding of these complex mechanisms and their interactions, as well as its also
being potentially able to establish the bases for the development of a new type of drugs
that are effective in DM.
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