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Abstract: The expected (E)-but-3-en-2-ones compounds I and II (half curcuminoids) were obtained by
the Claisen–Schmidt reaction between aldehydes 3,4-dimethoxybenzaldehyde or 4-nitrobenzaldehyde
with acetone. Concomitantly, 3-methylcyclohex-2-enones compounds III and IV arose from an un-
expected reaction of but-3-en-2-ones in the cascade reaction of a Michael-type addition of a second
molecule of acetone followed by Robinson annulation under strong basic conditions. Both enones
exhibit the (E)-configuration, compound I displays s-trans conformation, whereas compound II
exhibits conformational disorder as solid solution of s-cis and s-trans conformations. The related
3-methylcyclohex-2-enones exhibit envelope conformation. Compound III constitutes an example of
the rarest case of racemic solid solution (pseudoracemate), where a lack of chiral discrimination with
respect to the two enantiomers leads to an enantiomeric disorder of a racemic mixture with different
occupancies at the reference site. Due to the lack of strong hydrogen-bond donors in all compounds,
the crystal packing is mainly stabilized by weak intermolecular C-H···O interactions between the
molecules. The present work provides a new perspective on the search for by-products normally
overlooked in Claisen–Schmidt condensations.

Keywords: Claisen–Schmidt reaction; Michael reaction; Robinson annulation reaction; half-curcuminoids;
(E)-but-3-en-2-ones; 3-methylcyclohex-2-enones

1. Introduction

Half curcuminoids [1–3] are typically prepared employing the classical Claisen–
Schmidt condensation using strong base catalysis [4]. The resulting product is an α,β-
unsaturated ketone, usually an E-enone. However, the outcome in chalcone and half-
curcuminoid reactions may vary due to several side reactions. A common reaction observed
is the tandem Claisen–Schmidt condensations, leading to mono- and di-benzylidene ace-
tone by-products (Scheme 1, Path I). The prop-2-en-1-one moiety also provides a chemically
reactive function for Michael-type additions [4–8], leading to the formation of cyclic struc-
tures through a domino reaction [9,10] (Scheme 1, Path II) in the presence of catalysts other
than a strong base. Enones and cyclohexenones are the building blocks or synthons [10,11]
important in the synthesis of natural products and a wide range of biological activities
have been associated with them, such as anti-inflammatory and anticancer effects [12,13].
Furthermore, they are used as food additives and in the synthesis of pheromones [14].
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Scheme 1. Synthesis of compounds I–IV. 

 (E)-4-(3,4-dimethoxyphenyl)but-3-en-2-one (I), white solid (217 mg, 70%), m.p. 
84 °C. IR 3012-2917.01, 1664.01, 1617.06, 1592.30, 1509.52, 1420.58, 1222.80, 1159.99,1136.69, 
1016.92, 975.28 cm−1. 1H NMR: δH (500 MHz, CDCl3) 7.46 (d, J = 16.2 Hz, 1H), 7.13 (ddd, J = 
8.3, 2.1, 0.5 Hz, 1H), 7.08 (d, J = 2.1 Hz, 1H), 6.88 (d, J = 8.3 Hz, 1H), 6.61 (d, J = 16.2 Hz, 
1H), 3.92 (s, 6H), 2.37 (s, 3H).13C NMR: δC (125MHz, CDCl3) 198.28, 151.40, 149.33, 143.73, 
127.37, 125.28, 123.00, 111.14, 109.70, 56.00, 55.92, 27.35. (MS): M/z = 206. 

 (E)-4-(4-nitrophenyl)but-3-en-2-one (II), yellow pale solid (126 mg, 40%), m.p 106 
°C. IR 3456.35, 3112.33, 2926.22, 1665.44, 1594.95, 1517.16, 1345.61, 1259.71, 1108.52, 977.24 
cm−1. 1H NMR: δH (500 MHz, CDCl3) 8.31–8.21 (m, 2H), 7.75–7.66 (m, 2H), 7.54 (d, J = 16.3 
Hz, 1H), 6.83 (d, J = 16.3 Hz, 1H), 2.43 (s, 3H). 13C NMR: δC (125 MHz, CDCl3) 197.49, 148.62, 
140.69, 140.05, 130.40, 128.81, 124.20, 28.04. (MS): M/z 191. 

 5-(3,4-dimethoxyphenyl)-3-methylcyclohex-2-enone (III), yellow solid (92 mg, 25 
%), m.p. 89 °C. IR 2916.80, 2836.63, 1657.54, 1590.17, 1512.54, 1590.17, 1512.61, 1245.13, 
1139.33, 1021.15 cm−1. 1H NMR: δH (500 MHz, CDCl3) 6.86–6.83 (m, 1H), 6.79 (ddd, J = 8.2, 
2.1, 0.6 Hz, 1H), 6.76–6.75 (m, 1H), 5.97 (m, 1H), 3.88 (s, 3H), 3.87 (s, 3H), 3.32–3.23 (m, 1H), 
2.64 (ddt, J = 16.2, 3.7, 0.7 Hz, 1H), 2.56–2.49 (m, 3H), 2.01 (dt, J = 1.4, 0.8 Hz, 3H).13C NMR: 
δC (125 MHz, CDCl3) 199.09, 161.57, 149.08, 147.97, 136.05, 126.53, 118.45, 111.43, 110.18, 
55.97, 55.92, 44.19, 40.40, 39.23, 24.34. (MS): M/z = 246. 

 3-methyl-5-(4-nitrophenyl)cyclohex-2-enone (IV), pale yellow solid (75 mg, 20%), 
m.p. 120 °C. IR 3425.99, 2939.55, 1660.39, 1600.31, 1518.1, 1344.17, 1107.30 cm−1. 1H NMR: 
δH (500 MHz, CDCl3) δ 8.28–8.17 (m, 2H), 7.50–7.39 (m, 2H), 6.08–5.96 (m, 1H), 3.64–3.39 

Scheme 1. Synthesis of compounds I–IV.

In our study, the mono Claisen–Schmidt condensation (half-curcuminoids I and II)
and the cascade-like Robinson annulation products (compounds III and IV) (Scheme 1,
Path II) between two substituted aromatic aldehydes and acetone catalyzed with potassium
hydroxide were obtained in a one-pot mode reaction. We report herein the characteriza-
tion by spectroscopic techniques (NMR 1H, 13C, and IR), mass spectrometry, and X-ray
diffraction of compounds I–IV.

2. Materials and Methods

All chemicals were purchased from Sigma-Aldrich. Melting points were determined
on an Electrothermal IA9100 digital melting point apparatus (USA) in open capillary tubes
and are uncorrected. IR absorption spectra were recorded in the 4000–400 cm−1 range as
KBr pellets on a Perkin Elmer 283-B spectrophotometer (USA). 1H and 13C NMR spectra
were recorded in CDCl3 with a Bruker 500 MHz spectrometer (Bruker Mexicana S.A. de
C. V., Mexico, CDMX) using Tetramethylsilane as an internal reference. NMR spectra
were processed with MNova 12.0.0 software [15]. The Mass Spectra data were recorded
on an MStation JMS-700 (JEOL Mexico S.A of C.V., México, CDMX) or Jeol SX 102A
instrument, using electron ionization impact (See supplementary materials). Single-crystal
X-ray diffraction was carried out using a Bruker diffractometer (Bruker Mexicana S.A. de C.
V., Mexico, CDMX), model Smart Apex, or D8 Venture, equipped with Mo Kα, λ = 0.71073
Å. The data were collected and reduced using APEX and SAINT-Plus programs. The
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structures were solved by direct methods and non-hydrogen atoms were refined by a full-
matrix least-squares procedure on F2 with anisotropic temperature factors using SHELX
programs [16]. The positions of all H atoms were calculated geometrically, and a riding
model was used in the refinement, with C–H distances in the range of 0.93–0.97 Å and
Uiso(H) = 1.2Ueq (C). As disorder was found for compounds II and III, the site occupancy
factors (sof) of disordered atoms were refined, and disordered moieties were refined
using distance restraints (SADI, SAME) and ADP restraints (DELU, SIMU, and ISOR).
Mercury 4.2 software was used to prepare the graphs for publication [17]. The rather high
R merge values and the lower than 10 ratios of observed reflections to parameters for the
four structures can be attributed to a combination of crystals poorly scattering to the Mo
radiation, disorder in the structures, and the almost planar conformation of compounds.

Synthesis and Crystallization

In a 250 mL round bottom flask, 250 mg of 3,4-dimethoxybenzaldehyde, 1.5 mmol; or
4-nitrobenzaldehyde, 1.65 mmol, were dissolved in 50 mL of acetone; then, 3 mL of a 6 N
potassium hydroxide (KOH) solution in ethanol (EtOH) was added dropwise (Scheme 1).
The reaction mixture was stirred at room temperature and monitored by Thin Layer
Chromatography (TLC; silica gel 60 Å F254 plates, Merck) eluting with hexane-ethyl acetate
(7:3). After completion of the reaction (ca. 24 h), the acetone was evaporated in vacuo and
the reaction mixture was poured over ice and acidulated with diluted hydrochloric acid
(HCl) to pH = 5. The reaction mixture was extracted three times with EtOAc (3 × 15 mL).
The combined organic extracts were dried over anhydrous Na2SO4, then filtered and
the solvent was removed in vacuo. Finally, the crude reaction mixture was purified by
column chromatography using Sigma silica gel 60 Å mesh 70–230, eluting with a gradient
of hexane-ethyl acetate (7:3). Adequate crystals for X-ray studies of the four compounds
were obtained by slow evaporation from ethyl acetate at room temperature.

(E)-4-(3,4-dimethoxyphenyl)but-3-en-2-one (I), white solid (217 mg, 70%), m.p. 84 ◦C.
IR 3012-2917.01, 1664.01, 1617.06, 1592.30, 1509.52, 1420.58, 1222.80, 1159.99,1136.69, 1016.92,
975.28 cm−1. 1H NMR: δH (500 MHz, CDCl3) 7.46 (d, J = 16.2 Hz, 1H), 7.13 (ddd, J = 8.3, 2.1,
0.5 Hz, 1H), 7.08 (d, J = 2.1 Hz, 1H), 6.88 (d, J = 8.3 Hz, 1H), 6.61 (d, J = 16.2 Hz, 1H), 3.92
(s, 6H), 2.37 (s, 3H).13C NMR: δC (125MHz, CDCl3) 198.28, 151.40, 149.33, 143.73, 127.37,
125.28, 123.00, 111.14, 109.70, 56.00, 55.92, 27.35. (MS): M/z = 206.

(E)-4-(4-nitrophenyl)but-3-en-2-one (II), yellow pale solid (126 mg, 40%), m.p 106 ◦C.
IR 3456.35, 3112.33, 2926.22, 1665.44, 1594.95, 1517.16, 1345.61, 1259.71, 1108.52, 977.24 cm−1.
1H NMR: δH (500 MHz, CDCl3) 8.31–8.21 (m, 2H), 7.75–7.66 (m, 2H), 7.54 (d, J = 16.3 Hz,
1H), 6.83 (d, J = 16.3 Hz, 1H), 2.43 (s, 3H). 13C NMR: δC (125 MHz, CDCl3) 197.49, 148.62,
140.69, 140.05, 130.40, 128.81, 124.20, 28.04. (MS): M/z 191.

5-(3,4-dimethoxyphenyl)-3-methylcyclohex-2-enone (III), yellow solid (92 mg, 25%),
m.p. 89 ◦C. IR 2916.80, 2836.63, 1657.54, 1590.17, 1512.54, 1590.17, 1512.61, 1245.13, 1139.33,
1021.15 cm−1. 1H NMR: δH (500 MHz, CDCl3) 6.86–6.83 (m, 1H), 6.79 (ddd, J = 8.2, 2.1,
0.6 Hz, 1H), 6.76–6.75 (m, 1H), 5.97 (m, 1H), 3.88 (s, 3H), 3.87 (s, 3H), 3.32–3.23 (m, 1H), 2.64
(ddt, J = 16.2, 3.7, 0.7 Hz, 1H), 2.56–2.49 (m, 3H), 2.01 (dt, J = 1.4, 0.8 Hz, 3H).13C NMR: δC
(125 MHz, CDCl3) 199.09, 161.57, 149.08, 147.97, 136.05, 126.53, 118.45, 111.43, 110.18, 55.97,
55.92, 44.19, 40.40, 39.23, 24.34. (MS): M/z = 246.

3-methyl-5-(4-nitrophenyl)cyclohex-2-enone (IV), pale yellow solid (75 mg, 20%),
m.p. 120 ◦C. IR 3425.99, 2939.55, 1660.39, 1600.31, 1518.1, 1344.17, 1107.30 cm−1. 1H NMR:
δH (500 MHz, CDCl3) δ 8.28–8.17 (m, 2H), 7.50–7.39 (m, 2H), 6.08–5.96 (m, 1H), 3.64–3.39
(m, 1H), 2.73–2.63 (m, 1H), 2.63–2.52 (m, 3H), 2.04 (dd, J = 1.4, 0.8 Hz, 3H).13C NMR: δC
(125MHz, CDCl3) 197.61, 160.81, 150.52, 147.00, 127.70, 126.74, 124.09, 43.20, 40.55, 38.25,
24.32. (MS): M/z = 231.
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3. Results

The geometry of the molecules of compounds I–IV are shown in Figures 1–4, re-
spectively, and they are in agreement with analogous structures reported in the literature.
Refinement parameters are show in Table 1.
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Table 1. Experimental details.

Compound I II III IV

Crystal system Monoclinic Monoclinic Monoclinic Monoclinic

Unit cell parameters [Å,◦]
a = 9.6000(7)
b = 5.3426(4)
c = 22.353(2)
β = 97.307(2)

a = 7.4561(4)
b = 7.2591(4)

c = 17.7744(10)
β = 94.505(2)

a = 13.0205(10)
b = 8.0494(6)

c = 14.1040(11)
β = 114.852(2)

a = 4.9301(18)
b = 23.652(9)
c = 10.014(4)
β = 97.692(12)

Volume [Å3] 1137.17(14) 959.06(9) 1341.32(18) 1157.2(8)
Z/Calculated density [mg/m3] 4/1.205 4/1.324 4/1.220 4/1.327

Z′ 1 1 1 1
Absorption coefficient [mm−1] 0.086 0.099 0.084 0.095

Space group, F (000) P21/n, 440 P21/n, 400 P21/c, 528 P21/c, 488

Index ranges
−11 ≤ h ≤ 11
−6 ≤ k ≤ 6
−25 ≤ l ≤ 26

−8 ≤ h ≤ 9
−9 ≤ k ≤ 9
−23 ≤ l ≤ 21

−15 ≤ h ≤ 15
−8 ≤ k ≤ 9
−11 ≤ l ≤ 16

−6 ≤ h ≤ 6
−30 ≤ k ≤ 30
−13 ≤ l ≤ 13

Reflections collected 6066 16,684 5906 31,441

Independent reflections 2071
[R(int) = 0.0722]

2446
[R(int) = 0.0940]

2442
[R(int) = 0.1320]

2663
[R(int) = 0.1187]

Observed reflections
(I ≥ 2σ(I)) 1100 935 1383 1290

Completeness to θ = 25.10 99.6% 99.8% 99.6% 99.7%
Data/restraints/parameters 2071/0/139 2194/247/441 2442/ 72/195 2663/0/155

Final R indices
(I ≥ 2σ(I))

R1 = 0.0482
wR2 = 0.1026

R1 = 0.0532
wR2 = 0.1047

R1 = 0.0631
wR2 = 0.1370

R1 = 0.0516
wR2 = 0.0907

R indices (all data) R1 = 0.1005
wR2 = 0.1304

R1 = 0.1416
wR2 = 0.1670

R1 = 0.1204
wR2 = 0.1712

R1 = 0.1469
wR2 = 0.1203

Goodness-of-fit on F2 0.940 0.995 1.025 1.005
Largest diff. peak/hole [e·Å−3] 0.197/−0.172 0.114/−0.131 0.198/−0.268 0.174/−0.139

CCDC deposit number 2075964 2075965 2075966 2075970

4. Discussion

The molecular structure of Compound I is shown in Figure 1. This structure is
essentially planar and has (E) configuration for the C=C double bond and an s-trans
conformation between the double C=C bond and the carbonyl group. A cluster analysis
applied to the conformational analysis of enones and enimines in the crystalline solid state,
using structural information mined from the Cambridge Structural Database [18], revealed
that trans s-trans enones are less commonly observed than trans s-cis enones; however,
this trend is reversed for the subgroup of 4-R-but-3-en-2-ones for which the trans s-trans
(−4.02 Kcal·mol−1) is theoretically predicted [19] as the most stable form with respect to
trans s-cis (−1.83 Kcal mol−1) and the relative energy of trans s-cis-geometry with respect
to trans s-trans is ca. 2 Kcal mol−1 [19].

At an early stage of refinement of compound II, it was apparent that the molecule
was rather disordered over two sets of overlapping atomic sites (Figure 2) having unequal
occupancies. On this basis, the occupancies of the two disordered components refined
to 0.703(4) and 0.297(4), the major disordered component corresponds to the trans s-cis
conformation, and the minor component to the trans s-trans conformation of the but-
3-en-2-one moiety, rendering a solid solution of conformers. A rather similar disorder
was reported by Zhang et al. [20] for (E)-2-methoxy-4-(3-oxobut-1-enyl)phenyl acetate
approaching a near equimolecular ratio of conformers favoring slightly the trans s-trans
conformation. The s-trans and s-cis conformations in solid and liquid state are different,
although in the solid state, molecules can exist in the crystal in either s-trans or s-cis
conformations depending on the temperature at which crystals are grown [21]. However,
in liquid state the s-trans conformer is the dominant one at room temperature [22], with a
conformational barrier going from the s-trans to the s-cis conformer of 8.9 Kcal mol−1 in
acrolein [23].

Compound III (Scheme 1) contains a stereogenic center at position five of the cyclo-
hexenone ring, and the systematic absences in the diffraction data were uniquely consistent
for the space group P21/c, confirming that this compound crystallizes as a racemic mixture
of (5R) and (5S) enantiomers. However, with Z’ = 1, the compound exhibits enantiomeric
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disorder such that both enantiomers R and S are superimposed, each adopting opposite
conformations. The static disorder in compound III can be represented by atoms C4, C5,
and C6 having two almost mirror-related positions, while the other atoms have single
positions; the refined occupancy of the split atoms leads to 0.537(10) for S and 0.463(10)
for the crystal selected for data collection. Non-centrosymmetric space groups (Pn and
P21) were then tested, without improvement in the refinements: in Pn, the results were
very similar both for the disorder distribution and for the residual factors, but with high
parameter correlation and non-definite atomic displacement tensors. Consequently, the
structure was considered as centrosymmetric. In the major conformational component, the
ring puckering parameters [24] calculated for the atom sequence C1–C2–C3–C4–C5–C6
are Q = 0.472(11) Å, θ = 46.3(10)◦, and φ = 238.8(15)◦, which indicate an approximate
envelope conformation with C5 as a flap. The corresponding ring puckering parameters for
the minor component, calculated for the atom sequence C1–C2–C3–C24B–C25B–C26B are
Q = 0.512(12) Å, θ = 134.7(11)◦, and φ = 62.2(17)◦, confirming the change in enantiomorph.
At C5 the dimethoxyphenyl substituent occupy the equatorial position making a dihedral
angle of 54.5◦ with the mean plane of the methylcyclohexenone. The shape of the molecules
in the crystal structure of the enantiomers disorder almost has a symmetry plane (Figure 3).

These structural features show that both enantiomers have a high degree of isosterism,
minimizing the relative importance of chirality in the geometry of enantiomers while
opening the possibility of exchange among the crystals, thus leading to formation of solid
solutions [25–27].

In compound IV (Scheme 1 and Figure 4), the six-membered ring puckering pa-
rameters [24] calculated for the atom sequence C1–C2–C3–C4–C5–C6 are Q = 0.461(2) Å,
θ = 52.7(2)◦, and φ = 253.6(3)◦, which indicate an approximate envelope conformation with
C5 as a flap with the phenyl in equatorial position forming a dihedral angle of 44.10(8)◦.

Crystal Packing

Due to the lack of strong hydrogen bond donors in all compounds, the crystal packing
is mainly stabilized by weak intermolecular C–H···O interactions and eventually C–H···π
interactions (Table 2). Besides planar nature of compounds and the presence of phenyl
rings, stacking was observed only in one case (compound II) π···π.

Table 2. Geometry of the hydrogen bonding interactions (Å,◦) for compounds I–IV.

Compound D-H···A D-H H···A D···A D-H···A Symmetry Code

I

C1–H1A···O1
C3–H3···O1
C6–H6···O1

C11–H11B···Cg1
C9–H9···Cg1

C12–H12C···C3,4

0.960
0.930
0.930
0.960
0.930
0.960

2.61
2.60
2.62
2.84
3.05
2.84

3.529(3)
3.503(2)
3.545(3)
3.724(2)
3.733(2)
3.751(2)

160.3
162.4
173.8
154.0
131.9
143.3

x, −1+y, z
1−x, 1−y, 1−z
1−x, 1−y, 1−z

x, 1+y, z
1/2−x, −1/2+y, 1/2−z
1/2−x, −1/2+y, 1/2−z

II

C7–H7···O2
C9–H9···O3
C4-H4···O1

C10–H10···O1

0.930
0.930
0.930
0.930

2.57
2.57
2.72
2.72

3.327(9)
3.301(9)
3.559(7)
3.539(6)

138.9
135.8
150.0
147.9

−x, −y, 1−z
−x+1/2, y+1/2, −z+3/2

1−x, 2−y, 1−z
1−x, 2−y, 1−z

III

C6–H6A···O1
C9–H9···O1

C15–H15A··· O2
C15–H15A···O3
C14–H14A···O1
C4B–H4C···O3

0.970
0.930
0.960
0.960
0.960
0.970

2.59
2.65
2.62
2.80
2.86
2.66

3.539(10)
3.467(3)
3.519(3)
3.446(3)
3.806(3)

3.585(10)

164.5
146.3
155.5
126.0
170.0
159.0

−x, −y+1, −z+1
1−x, y+1/2, −z+1/2
−x, 1−y, 1−z
−x, 1−y, 1−z

1−x, 1−y, 1−z
x, 1/2−y, −1/2+z

IV

C6–H6A···O1
C6–H6B···O1
C7–H7B···O3
C12–H12···O1
C4–H4A···O2
C9–H9···O3
C5–H5···Cg1

C4–H4B···C2,3

0.970
0.970
0.960
0.930
0.970
0.930
0.980
0.970

2.64
2.88
2.68
2.66
2.72
2.73
2.98
2.84

3.581(3)
3.829(3)
3.467(3)
3.343(3)
3.327(3)
3.630(3)
3.824(3)
3.788(3)

162.7
166.0
139.0
131.0
121.0
162.0
145.0
165.0

−1+x, y, z
−x, 1−y, 1−z
−1+x, y,1+z

1−x,1−y, 1−z
−1+x, 1/2−y, 1/2+z
−1+x, 1/2−y, 1/2+z

−1+x, y, z
−1+x, y, z
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The crystal packing of compound I is shown in Figure 5. Double-strand twisted
ribbons are formed by C–H···O interactions (Table 2), which are held together by C-H···π
(average C–H···Cg separation = 3.729(2) Å, average C–H···C=C separation = 3.751(2) Å).
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Figure 6 clearly shows the effect of isosterism of both conformations upon the crystal
packing of compound II; essentially the same kind of interactions are observed among
molecules. Columns of π···π stacking molecules along the a-axis (average Cg···Cg sep-
aration = 3.843(4) Å, average Cg···C=C separation = 3.468(11) Å) are interconnected by
C–H···O interactions involving aromatic and olefinic hydrogens and the oxygen atoms of
ketone and nitro moieties (Table 2).

Packing for compound III: The smallest intermolecular contact for the non-disordered
common part of enantiomers is between the methoxy substituents leading to formation of
centrosymmetric dimers. This implies that R and S enantiomers of compound III should
be involved, but by virtue of the observed isosterism, the interchanging of enantiomers is
possible. These dimers are extended into ribbons along the [1 0 1] direction by C–H···O
interactions (C6–H6A···O1 and C9–H9···O1) and the ribbons weakly interconnected by
C14–H14A···O1 interactions (Figure 7, Table 2).

Finally, in compound IV, centrosymmetric dimers are built from interaction of the oxy-
gen of the carbonyl group and the α-methylene of cyclohexenone (Figure 8, red molecules)
and with an aromatic hydrogen (Figure 8, blue molecules) interconnected by the nitro
group into a tridimensional network, reinforced by C–H···π and additional C–H···O1
interactions (Table 2).
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Compounds I and II were previously reported [28–30] from different synthetic routes,
whereas compounds III and IV were reported using different reaction conditions [31].
A major disadvantage described for the Claisen–Schmidt reaction is the dominance of
polymerization by-products [32,33] with a remarkably high variation in yield from 10% to
ca. 100% [33].

5. Conclusions

A basic Claisen–Schmidt condensation of aromatic aldehydes with acetone yield
the expected products of mono-condensation (E)-but-3-en-2-ones. Concomitantly, the
unexpected 3-methylcyclohex-2-enones were obtained by a cascade Robinson annulation
reaction. The single-crystal structure determinations of compounds I and IV showed the
expected structural and crystallographic features; the analysis of anisotropic displacement
ellipsoids and the difference electron density map confirmed that such molecules are not
disordered. Thus, the crystals of compounds I and IV belong to a typical case of a racemic
compound, whereas in compounds II and III, unexpected and unique features were
found. These compounds crystallize as co-crystals (solid solutions) of statistical disorder
of trans s-cis/trans s-trans conformers (compound II) and the rarest case of enantiomeric
disorder of a racemic mixture, pseudoracemate (compound III). Our work shows how
the Claisen–Schmidt condensation step continues in cascade toward annulation, thus
giving room for discussion and deeper understanding of this apparently straightforward
reaction. In addition, an interesting question arises from the low yields often reported
in the literature for the Claisen–Schmidt reaction potentially overlooking important and
unexpected cyclic products.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cryst11040404/s1, Figure S1–S12. CCDC-2075964, CCDC-2075965, CCDC-2075966, CCDC-
2075970 contain the supplementary crystallographic data for compounds I–IV, respectively. These
data can be obtained free of charge via www.ccdc.cam.ac.uk/cgi-bin/catreq.cgi, by e-mailing

https://www.mdpi.com/article/10.3390/cryst11040404/s1
https://www.mdpi.com/article/10.3390/cryst11040404/s1
www.ccdc.cam.ac.uk/cgi-bin/catreq.cgi
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data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union
Road, Cambridge CB2 1EZ, UK, fax; +44(0)1223-336033.
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