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Abstract: The biomineralization process is a mechanism inherent to all organisms of the Earth.
Throughout the decades, diverse works have reported that the origin of life is tied to crystals,
specifically to biominerals of silica that catalyzed RNA, and had some influence in the homochirality.
Although the mechanism by which crystals surfaces (minerals) gave origin to life has not yet
been proven, the truth is that, up to the present, biominerals are being synthetized by the
organisms of different kingdoms in two basic ways: biologically induced and biologically controlled
biomineralization. Paradoxically, this fact makes a fundamental difference between inorganic materials
and those formed by living organisms, as the latter are associated with macromolecules that are bound
to the mineral phase. Conserving growth and formation of these biogenic organic crystals inside cells
is a fascinating subject that has been studied mainly in some of the kingdoms, like Monera (bacteria),
Fungi (yeasts), and Animalia (Homo sapiens). Notwithstanding in the Plantae kingdom, the formation,
conservation, and functions of crystals has not yet been completely elucidated and described, which
is of particular relevance because life on Earth, as we know it, would not be possible without plants.
The aim of the present work is to revise the different crystals of calcium oxalate synthetized inside the
cells of plants, as well as to identify the mechanism of their formation and their possible functions in
plants. The last part is related to the existence of certain proteins called phototropins, which not only
work as the blue-light sensors, but they also play an important role on the accumulation of calcium in
vacuoles. This new trend is shortly reviewed to explain the characteristics and their plausible role in
the calcium uptake along with the biomineralization processes.

Keywords: crystallization of proteins; crystallization of macromolecular complexes; in vivo crystals;
organisms of the different kingdoms; calcium uptake; phototropins

1. Introduction

The synthesis of biogenic crystals is perhaps the most ancient chemical process linked to the
origin, evolution, and conservation of life on Earth. The possible role of minerals as catalysts in
the polymerization of monomers to polymers of organic molecules (RNA) essential for the origin
of life was proposed six decades ago by Bernal (1949) [1]. Since then, several studies have reported
experiments showing that the origin of life is linked to either crystals or biominerals. There are works
indicating that life started with pyrite, which, due to its positive charge on the surface, can agglomerate
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biomolecules with negative charge that would become organized, forming large organic chains in the
evolution that would be transformed into complex organic molecules [2,3]. Some authors describe
that montmorillonite [4], hydroxyapatite, illite [5], and even other minerals are responsible for the
catalysis of diverse organic molecules [6–8]. Interestingly, one of the reported works indicates that the
first living organisms were of mineral origin and that the first genes were crystalline [9]. Besides, it is
speculated that these crystalline genes should be able to store a large amount of information and to
transmit it through crystalline growth processes. This proposal infers that clay would be the crystal
that fulfills the characteristics of being a crystal-gene, because it is similar to the proteins or DNA
formation. Besides, it presents many defects in its structure, defects that can evolve and be transmitted
to successive generations, which could be considered as a model of primary genetic transmission [9].
As a whole, these works suggest that, apparently, minerals fostered the chemical processes that gave
rise to biogenesis. Although the mechanism by which crystals gave origin to life has not yet been
confirmed, it is true that, up to the present, organisms of the different kingdoms continue to synthetize
crystals. A fact that, paradoxically, makes a fundamental difference between inorganic materials and
those formed by living organisms, as the latter are associated with macromolecules bound to the
mineral phase. Among these macromolecules are important organic molecules such as amino acids,
sugars, and other molecular species that formed crystals in the organisms of the five kingdoms. Both
the organic and inorganic crystals play relevant roles in the formation and conservation of life [10].
For example, in bacterial cells, crystals formed by iron, named magnetite crystals, exert magnetic
and storage functions and capture iron as a reserve of electron acceptors or donors [11]. In addition,
proteins participate in the synthesis of these magnetite crystals [12]. Another type of crystals widely
reported in diverse organisms are the calcium salts crystals, which are found in avian eggshells, fungi,
plants, and animals. Most of these crystals serve as protection, defense, support, or sensors [13–28]. A
unique characteristic of the synthesis of these crystals is that it is mediated by proteins [19]. Although a
considerable amount of inorganic-type crystals has been reported to form mainly the cellular structure,
the crystals synthetized within the cells, whose chemical composition is made of biomacromolecules,
like proteins, carbohydrates, nucleic acids, and other organic molecules, are of special interest, because
their presence inside the cells is bound to biological functions [19,29]. There are biominerals found
in contact with these biological macromolecules, these are hybrid nanocomposites where proteins,
polysaccharides (chitin, collagen and other sugars) are chemically associated with a variety of calcium
salts namely calcium oxalate, calcium phosphate and calcium carbonate. All these inorganic–organic
hybrid materials are creating smart and functional materials that give new ideas for future applications
in science (biomimetics) [30]. Some biominerals like calcium oxalate can also be used in materials
science with specific applications to preserve cultural heritage. The method consists of protecting
surfaces of stone material or stone-based cultural relics and comprises cleaning the surface with a
cleaning agent. This method already patented uses calcium oxalate supersaturated solution to be
crystallized on the surface to form a calcium oxalate protective film [31].

On the other hand, calcium phosphate and hydroxy apatite are very important biominerals,
which are present in bones and teeth formation in higher animals. Calcium phosphate biominerals are
also involved in urolithiasis [32]. Particularly in plants, the presence of calcium phosphate has not
been extensively investigated. The first observations were done recently on plant trichomes, where
calcium phosphates are often replaced by silica [33,34]. The intriguing discovery about the existence
of hydroxyapatite as structural biomineral in plants (loasaceae-plants-teeth), as way of protection
against herbivores, has been recently investigated [33]. Conservation of the growth and formation of
these organic crystals inside the cell is a fascinating topic that has so far only been studied in some
of the kingdoms, like the Monera (bacteria), Fungi (yeasts), and Animalia (Homo sapiens) [10,16,19].
However, in the Plantae kingdom, the formation, conservation, and functions of crystals has not yet
been fully elucidated or described, which is of particular relevance as life on earth, as we know it,
could not be possible without plants. Some of the important functions of plants are: (i) to provide
food to almost all terrestrial organisms; (ii) to maintain in equilibrium the atmosphere of the Earth by
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producing oxygen and displacing enormous amounts of water from the soil to the atmosphere; (iii) to
maintain the cycle of water and nutrition of soils; (iv) to contribute to the nitrogen cycles and other
biogeochemical cycles; (v) to keep interdependence with animals, microorganisms, and among plants;
and (vi) to release large amounts of carbon dioxide to the atmosphere. At a global level, it has been
calculated that plants release, as a product of respiration, approximately 60 gigatons of carbon per year
to the atmosphere, which, in turn, is exploited by the rest of the organisms [27]. A very important
topic that deserves to be taken into account is the process of silica deposition and biosilicification either
in animals or in plants. These silica biogenic minerals whose name has been coined as biolites in
general have specific nomenclature namely zoolites in animals and phytolites in plants. These biolites
have also specific names depending on the mineralizing agent, if there is calcium carbonate these are
called calcibiolites, whereas if there is amorphous silica, these are called silicobiolites (or phytolites).
Phytolites, in particular, were discovered for the first time by Christian Gottfried Herenberg in 1854, but
the precise understanding and research of their formation as well as the role of proteins involved in the
biosilicification is still scarce. These topics, as well as the first approaches to understand their formation
and their biomineralization mechanisms, have been recently reviewed [35]. The physiological and
ecological significance of these biomineralization processes in plants, as well as an overview on the
problem of vital effect, have also been revised few years ago [36,37].

The objective of this work was to perform a review of the different crystals synthetized inside the
cells of plants, specifically calcium oxalate (CaOx) crystals, as well as to elucidate the mechanism of
formation and the possible functions of these crystals in the plant. Additionally, in the last part, we
have shortly revised topics related to the existence of certain proteins called phototropins found in
many plants. These are promising blue-light biosensors that play an important role in the uptake of
calcium into the biomineralization processes.

2. Calcium Oxalate Crystals Synthesized in Plants

Crystals produced by plants are the final products of cellular metabolic processes, which usually
are deposited in vacuoles and cytoplasm. The most common inorganic crystals are constituted by
calcium salts, like calcium oxalate and calcium carbonate [26]. Other crystals that are also found in
plants are silica ones, which are present in the cell wall of Gramineae plants. Crystals are found in
diverse geometrical shapes, which are characteristic of each species or of higher taxonomic groups,
thus, some authors consider that they could be useful as classification and taxonomic identification
criteria [25]. Plants that generate oxalate crystals are classified in two categories, those containing
soluble oxalates and those containing insoluble oxalates. Soluble oxalates include oxalic acid and
sodium, potassium, and ammonium oxalates. Some of the plants in which the production of soluble
oxalates has been reported are Averrhoa carambola L, Parthenocissus tricuspidata, Rumex crispus, Halogeton
glomeratus, Oxalis tuberosa, Rheum rhabarbarum. However, plants that contain insoluble oxalates are
those that produce crystalline needles of calcium oxalate called raphides. Our present work is focus
on these plants. Interestingly, the generation of insoluble crystals produced by plants has been
proposed as a defense mechanism against herbivore animals, because when these animals chew on
these plants, the crystals produce small injuries in the mucosa inducing severe irritation. Another way
of damaging herbivores is through crystals containing enzymes with antitrypsin activity that stimulate
the release of histamine and bradykinin, because these crystals puncture and lesion the cellular
structures accompanied by the release of vasodilating agents that lead to edema and congestion. The
plants that produce insoluble oxalate crystals are: Agave, Alocasia spp., Arisaema triphyllum, Caladium
spp., Colocasia, Difenbachia spp, Monstera, Oxalis, Philodendron, Symplocarpus, Xanthosoma, Zantedeschia
aethiopica, Epipremnum aureum, Spathiphylum, Syngonium, Anthurium, Aglaonema, Begonias [25–27].

2.1. Soluble Crystals: Oxalic Acid and Sodium, Potassium, and Ammonium Oxalate

The name of the oxalic acid derives from the genus of the Oxalidaceae family of plants and was
identified for the first time in sorrels by the chemist and botanist Herman Boerhaave in 1745. Later
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on, it was isolated from Oxalis acetosella in 1773 by Francois Pierre Savary [27,28]. Currently, several
mechanisms have been described through which plants synthetize oxalic acid. One of these pathways
is through glycolate, which can be converted to oxalic acid. Another synthesis mechanism derives from
the rupture of oxaloacetate or ascorbic acid [27,29]. The oxalic acid reacts with cations resulting in the
formation of different crystals of oxalate, which has been considered to be related with the maintenance
of ionic equilibrium [29]. Plants of the Oxalidaceae family in which synthesis of oxalic acid crystals has
been reported are varied; for example, Averrhoa carambola is a popular plant native to Asia, in which a
high concentration of oxalic acid has been identified [38,39]. This plant has been associated with the
diseases caused in people consuming it; among these diseases are acute nephropathy by oxalate and
the direct renal tubular damage through the release of free radicals, which are the main mechanisms
involved in the acute renal injury (ARI) induced by A. carambola [38]. Oxalic acid is also produced in
other plants like Spinacia oleracea, Rumex acetosa, Apium graveolens, Daucus carota, Brassica oleracea var.
italica, Brassica oleracea var. capitata. From the oxalic acid, plants synthetize both the soluble oxalate
(sodium, potassium, ammonium oxalate) and the insoluble ones (calcium oxalate) [38–41].

2.2. Insoluble Oxalates: Calcium Oxalate

Calcium oxalate (CaOx) crystals are considered common compounds that are found in diverse
groups of plants. The CaOx crystals are found in algae, angiosperms, and gymnosperms, in a total of
more than 215 families [42,43]. These plants accumulate CaOx through a biomineralization process
in diverse ways. It has been described that these crystals are formed mainly in the intra-vacuolar
membrane or in the chamber of specialized crystalline cells known as idioblasts [44–48] (Figure 1).
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The synthesis of crystals is associated with membranes, chambers, or inclusions found inside
cellular vacuoles, as well as with proteins, such as calsequestrin, whose function is to regulate the
activity of the cytosolic calcium before it is stored in the vacuoles [27,29,49]. It has been reported that
the CaOx crystals are able to modify the tubules, plastids, and to enlarge the nuclei of idioblasts [50].
The synthesis of CaOx crystals starts with ascorbic acid, which gives rise to oxalic acid. Once the
adequate concentration of oxalic acid has been reached, the oxalate oxidase is activated, which acts as
a regulator of oxalic acid and participates in the formation of oxalate crystals [51–54]. CaOx crystals
present different morphologies, which can include raphides, druses, styloids, prisms, and crystal
sand [50], the most common ones are raphides and druses (Figure 2).
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Figure 2. This figure shows a collection of the most typical morphologies published elsewhere of
diverse CaOx crystals, prisms, sand, raphide, and druses. Single raphide crystal from leaf raphide
bindle of Psychotria puntata. 8 and 9: Leaf raphide crystal bundle of Psychotria puntata. 10: Styloid
crystal from leaf spongy parenchyma of Peperomia. 11: Druse crystal from leaf of Opuntia sp. 12: Crystal
sand from petiole of Nicotiana glauca. 13: Prismatic crystal from leaf of Begonia sp. 14: Aggregate crystal
complex from leaf spongy parenchyma of Peperomia astrid. Microphotographs from Franceschi and
Horner Jr., 1980 [50], reproduced with permission.

Some authors describe that the crystalline form adopted by CaOx crystals depends on the way
in which they act on the membranes of the crystal chamber to mold its shape. Although the actual
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mechanism that regulates the shape has not been yet elucidated. Regarding crystals that depict the
CaOx raphide shape, they generally present four faces, the form of an H with a groove on both sides, or
a transversal hexagonal section, and some present spikes. The circular section of raphides are probably
hexagonal in a transversal section [55]. One of the functions of CaOx crystals in the raphide shape is as
defense mechanism of plants against predators, as they cut and injure tissues of the throat or esophagus
of the predator when chewing on the leaves of the plant. Besides, some ornate plants that contain
raphides, and which can be ingested accidentally by humans can cause painful edemas, formation
of vesicles, and painful dysphagia accompanied by itching and burning in the mouth and throat,
symptoms that can last up to two weeks. Some of the plants that synthetize raphides are: Alocasia,
Arisaema, Arum, Schefflera, Caladium, Caryota, Colocasia, Dieffenbachia, Epipremnum, Fucsia, Monstera,
Philodendron, Spathiphyllum, and Tradescantia. The other crystalline structure presented by CaOx crystals
are druses. Formation of druses implies diverse biochemical routes for the biomineralization of CaOx
in plants; rupture of L-ascorbic acid, hydrolysis of oxaloacetate, rupture of isocitrate and/or oxidation
of glycolate/glyoxylate are the routes that have been described [48,56]. As in the formation of raphides,
proteins, polysaccharides, membrane structures participate in the synthesis of druses. Druses are
also found in the leaves and scales of the buds of plants, like Prunus, Roses, Allium, Vito, Morus, and
Phaseolus. The poisonous substances in druses are a defense mechanism of plants against herbivores.

2.2.1. The Cactaceae Family of Plants

An interesting group of plants of the Cactaceae family contains high concentrations of CaOx
crystals [45,48,57,58]. This family is native to the American continent; it is constituted by ca. 2000
species, distributed from northern Canada to The Patagonia, and from sea level, in costal dunes, to the
high mountains in Peru [59]. This family is divided into four subfamilies: Pereskioideae (monogeneric,
ancestral cactus), Opuntioideae (cushion-type cactus), Maihuenioidea (monogeneric), and Cactoideae (the
one with the greater number of species) [45]. These plants are considered by the experts as a natural
monophyletic group that has evolved in the last 80 million years and developed from non-succulent
forms. An interesting trait of Cactaceae is the fascinating anatomy of their structures and tissues that
have the capacity to store large amounts of water, which grants them a great adaptability to droughts.
Ample studies have been performed in this family to evaluate the frequency of the different types of
CaOx crystals aimed at determining whether they can be used as traits for Cactaceae systematics [45].
Extensive studies show the different types and composition of CaOx crystals presented by this family.
In this way, it has been identified that the species of both Pereskioideae and Opuntioideae form calcium
oxalate monohydrate (COM, whewellite), whereas the Cereoideae species form preferably calcium
oxalate dihydrate (COD, weddellite). Although there are some exceptions, and some cacti species
have shown the coexistence of whewellite and weddellite [45]. The morphologies presented by the
COM type are generally monoclinic druses, monoclinic styloids (prism), raphide, rhomboid, and
parallelogram, whereas the COD type are tetragonal druses, aspherical aggregates, tetragonal styloids
(prism), and (bi)-pyramid [45,57]. Some of these morphologies are depicted on Figure 3.
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Figure 3. Morphologies of the CaOx crystals identified in Cactaceae. Microphotographs from
Bárcenas-Arguello et al., 2015 [57] reproduced with permission. Crystal habits in species of Cephalocereus.
A–F. C. apicicephalium, G–N. C. nizandensis, O–T. C. totolapensis. Bar is 25 µm in A,F,M,O,R,S, 100 µm
in B,C, 10 µm in D,E,H,J,N,P, 2.5 µm in G, 50 µm in I,K,L,Q, 5 µm in T.

Other Cactaceae species, like the vine cactus Hylocereus costaricensis and Selenicereus megalanthus,
have been shown to be able to synthetize both mono- and di-hydrated CaOx crystals with different
morphologies [58]. Other species within the Cactaceae family are Cephalocereus apicicephalium, C.
totolapensis, and C. nizandensis, which are endemic to Mexico; interestingly, it was found that the CaOx
crystals are of the weddellite type with different degrees of hydration [57]. The fact that these species
present this type of polymorph is novel for this genus, as they can be used as a source of phylogenetic
characters [57]. Other cactaceans in which CaOx crystals have been identified are Coryphantha clavata,
Ferocactus latispinus, Opuntia ficus-indica, O. robusta, and O. strepthacantha [59]. In these species, through
Raman spectra, it was possible to identify the chemical composition of the CaOx crystals; in the three
Opuntia species, the crystals are formed by calcium oxalate monohydrate, whereas the species of C.
clavata and F. latispinus form crystals of calcium oxalate dihydrate [59]. Mammillaria uncinata is an
endemic biznaga species pertaining to the Cactaceae family found from the North to the South of
Mexico. Through energy dispersive spectroscopy, IR and Raman spectroscopy, it has been shown that
this species produces calcium oxalate dihydrate (weddellite) crystals [60,61].
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2.2.2. Fabaceae or Leguminosae Family

Formation of CaOx crystals is a process that also occurs in fruits, seeds, grains, and vegetables.
It is interesting how Gulliver, since 1873, showed the presence of crystals in the pericarp and testa of
some Leguminosae or Fabaceae [62,63]. Prismatic crystals of CaOx have been identified in the subfamily
Faboideae [64–72]. Beans are legumes that possess eatable seeds with the presence of CaOx crystals.
This seed is distributed in the five continents. It has been proposed that the mechanism for the
formation of crystals in the envelope of bean seeds involves participation of fibrillar material inside the
vacuoles, as well as mitochondria and plastids. Development of crystals implies a thickening of the cell
wall that makes contact with crystals and start their development [69]. By means of X-ray diffraction,
crystals have been identified in the kidney bean, and it was determined that they correspond to the
whewellite polymorph [62]. These crystals present an interesting morphology, as they are twin crystals.
This type of crystals can be of two types; kinked and straight crystals. Crystals of this type exist in
other plants, like Psychotria punctata, Peperomia sp., Opuntia sp., Nicotiana glauca, Begonia, Peperomia
astrid, Quercus, Castanea, Fagus, Carpinus, and Ostrya [62].

CaOx crystals are also found in leaves and it has been shown that these crystals accompany the
veins. The polymorph of these crystals is the calcium oxalate monohydrate (whewellite) [65], which is
the same as that found in the seeds. Interestingly, it has been reported that the crystals in the bean
play a relevant role in regulating the levels of bulk calcium [67]. Another species of the Fabaceae
family is Glycine max L. (soybean), this plant is cultivated for its seeds of mid content of oil and high
content of protein. This grain is commercialized worldwide due to its multiple uses. The presence of
CaOx crystals has been observed in practically all organs, both vegetative and reproductive, of the
soybean [61]. It has been reported that the formation of these crystals is due to an accumulation of
calcium in the apoplast of cells [51]. The morphology of the crystals found in the different organs
of the soybean varies. However, the crystals of the soybean sheath were smaller as compared to the
crystals found in other vegetative and reproductive organs of the soybean [61]. It has been reported
that this type of prismatic crystal morphology is produced when calcium transport is limited by the
lignification of the cell walls [73]. Besides, it has been observed that the CaOx crystals found in young
ovules before fertilization increased in the funiculus and inner integument in the young seed. As the
embryo grew, crystals started to appear in the cotyledons and, in that moment, the crystals of the outer
integument disappeared. Close to the mature seed, the crystals were observed only in the cotyledons
and in the funiculus [74] (Figure 4).

Medicago is another genus of the Fabaceae family; it is formed by perennial plants with flowers
known as bur-clovers. The most conspicuous member of this genus is Medicago sativa known commonly
as alfalfa [75]. In this species, CaOx crystals have been identified in the parenchymatous sheath that
envelopes the vascular bundle in the leaves. Crystals are produced on the surface of the leaf clusters,
and they are less frequent and organized in the stems [76]. Medicago truncatula is another species in
which CaOx crystals have been identified and analyzed. This plant grows around 10 to 60 cm of height
with trifoliate leaves and it is used as an experimental model. It has been reported that the prismatic
CaOx crystals produced by alfalfa are used as a defense mechanism against insect feeding, because the
crystals have abrasive effects on the mandibles of insect larvae [77]. The CaOx crystals in M. truncatula
accumulate predominantly in the sheath that surrounds the secondary veins of the leaves [75,77].



Crystals 2020, 10, 591 9 of 23
Crystals 2020, 10, x FOR PEER REVIEW 9 of 23 

 

 
Figure 4. CaOx crystals in soybean. According to the original Figure the images correspond to 3) 
Ovary walls. 4) Anthers. 5) Youngest soybean ovules. 5–12) Embryo cotyledons 1 to 16 days 
(integuments). 13–15) Seeds from 24 to 60 days (cotyledons). 16) Fractured-open cell vacuoles and 
seen in cross-sectional view. 17) Longitudinal view. From Ilarslan et al. (2001) [74] reproduced with 
permission. 

Medicago is another genus of the Fabaceae family; it is formed by perennial plants with flowers 
known as bur-clovers. The most conspicuous member of this genus is Medicago sativa known 
commonly as alfalfa [75]. In this species, CaOx crystals have been identified in the parenchymatous 
sheath that envelopes the vascular bundle in the leaves. Crystals are produced on the surface of the 
leaf clusters, and they are less frequent and organized in the stems [76]. Medicago truncatula is another 
species in which CaOx crystals have been identified and analyzed. This plant grows around 10 to 60 
cm of height with trifoliate leaves and it is used as an experimental model. It has been reported that 
the prismatic CaOx crystals produced by alfalfa are used as a defense mechanism against insect 
feeding, because the crystals have abrasive effects on the mandibles of insect larvae [77]. The CaOx 
crystals in M. truncatula accumulate predominantly in the sheath that surrounds the secondary veins 
of the leaves [75,77].  

Figure 4. CaOx crystals in soybean. According to the original Figure the images correspond to (3)
Ovary walls. (4) Anthers. (5) Youngest soybean ovules. (5–12) Embryo cotyledons 1 to 16 days
(integuments). (13–15) Seeds from 24 to 60 days (cotyledons). (16) Fractured-open cell vacuoles and
seen in cross-sectional view. (17) Longitudinal view. From Ilarslan et al. (2001) [74] reproduced
with permission.

2.2.3. The Gramineae or Poaceae Family

The Gramineae or Poacea family is placed fifth among the largest families of the kingdom, with
780 genera and close to 12,000 species. It is considered that almost 40% of the terrestrial space is
occupied by these species. They are found in all continents, except in Antarctica, and in both aquatic
and terrestrial environments. Traces of this family have been found that go back to the Cretaceous
period, since rests of grasses related to modern rice and bamboo have been found in fossils of that
period. This information indicates that biomineralization is a fundamental process performed by
the first cells that existed on Earth and, undoubtedly, this family of plants is capable of achieving it
successfully. Some of the widely cultivated grasses are Zea mays (corn), Triticum (wheat), Hordeum
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vulgare (barley), Avena sativa (oat), Sorghum (sorghum), and Oryza sativa (rice). In the Z. mays species,
commonly known as corn, the presence of crystals has been reported since 1903 [78]. The morphology
of the described crystals corresponded to sphalerite, irregular crystalline aggregates, prismatic crystals,
and double-pyramid shapes [79]. CaOx crystals have also been reported in the leaves of a bamboo
(Bambusa stricta Roxb) [79]. Although species of this family have been described of being formed of
CaOx crystals, there is scarce or nil information about the polymorph and the morphology of these
crystals in the different species.

2.2.4. Plants of Human Consumption That Produce Caox

As mentioned, CaOx crystals have been found in most plants. Fruits and vegetables contain
variable amounts of these crystals. It has been described that most are not harmful to health; however,
some vegetal species can contain a higher concentration of crystals and can induce intoxication. A
family of which some of its species are used to prepare alcoholic beverages, both fermented and
non-fermented, is the Agavaceae. More than 200 species have been identified pertaining to this family;
it is considered that this family appeared some 12 million years ago. One species of this family is the
Agave tequilana Weber, from which tequila is obtained. The CaOx crystals characterized in this species
depict styloid and raphide morphologies [80,81]. Another species of this family is Agave atrovirens,
from this plant a fermented beverage is obtained called “pulque”, CaOx crystals with the raphide
morphology were identified in this plant [82]. Another species of great interest as food that is capable
of producing CaOx crystals is Theobroma cacao L., which is the cacao tree. This plant pertains to the
Malvaceae family, which is native to Mexico and its seed is considered as the food of gods. The presence
of CaOx crystals has been reported in the seed of T. cacao on its outer endosperm epidermis [44].
The Solanaceae family is another family of interest as food source. Within this family is the Solanum
lycopersicum species, commonly known as tomato. These species are widely spread in the American
continent. In these species, it is common to find small yellow spots around the calix and on the upper
part of the fruit. These spots have been found to correspond to CaOx crystals, presenting a raphide-type
morphology, which are produced in large amounts in the pulp of tomatoes, which show numerous
gold spots in their wall [83,84]. Another plant in which CaOx crystals have been reported is in the
kiwifruit, in this the morphology corresponds to the polymorph whewellite [85]. Even though, in
diverse fruits and legumes of human consumption, CaOx crystals have been identified as the causative
agents of mouth irritation [81,83,84], these works only characterize very superficially these crystals;
it would be interesting to characterize the CaOx crystals in all fruits, grains, and seeds that are a
fundamental part of the food network of higher organisms.

2.2.5. The Araceae Family

Aside from the plant families already mentioned, there are other plants that produce CaOx like
ornamental plants, which, if not handled correctly, can cause local irritation or edema, because of
the type of CaOx they contain. A family of ornamental plants is the Araceae, which comprises 104
genera and more than 3000 species. Among this family are those known as arum (Anthurium), calla
(Zantedeschia), philodendron (Philodendron), and duckweed (Lemna) [86]. As mentioned, the crystals
exert a protective function, in the case of the Araceae family, analyses have shown that the crystals
protect the reproductive tissues, and these crystals participate in pollination. Interestingly, it has been
found that the species of this family produce crystals with different morphologies (Figure 5) from those
generated in the inflorescence of Amorphophallus titanum; besides, crystals mixed with pollen have been
found in aroid species [87], a result indicating that the crystals protect the gametes and embryos from
predatory insects [88].
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Figure 5. Crystals in male flower parts of aroids. (A–D) Species with free stamens. (E–R) Species
with stamens fused into synandria. Figure from reference [88], reproduced with permission. Original
figure legend: “Crystals in male flower parts of aroids. (A–D) Species with free stamens. (E–R) Species
with stamens fused into synandria. (A) Stamen of Anthurium clarinervium. Filament at bottom left;
raphide bundles visible at top, presumably in connective; gynoecium wall at right. (B) Stamen of
Typhonium venosum; raphide bundles at top of connective. (C) Raphide bundles in fi lament and
connective of stamen of Monstera obliqua. Pollen visible in anther; gynoecium wall at right. (D) Stamen
of Pistia stratiotes; crystals in short fi lament and in connective between anthers. (E) Connective of
synandrium of Caladium bicolor. Druses at top, and raphide bundles and biforine-like cells, mixed with
pale, pigment-containing bodies below. (F) Connective of synandrium of Dieffenbachia seguine; anthers
with pollen at upper right and lower left. Druses at top of connective; biforine-like cells below and
alongside anthers. Moreover, note curving line of biforine-like cells running along the anther at upper
right, and also (out of plane of focus) at lower left. (G) Connective of synandrium of Philodendron
erubescens; outer surface at very top of picture, side surface at right edge. Druses at top, druses, and
biforine-like raphide bundles below, especially at side. One large elongated bundle also visible near
side, at lower right. (H) Druses and raphide bundles along the side of the connective of Ph. solimoesense.
Crystals were difficult to see with bright-field illumination, because the pigment does not readily clear;
therefore, they were visualized with polarization microscopy. (I) Close-up of biforines in connective of
Ph. melinonii. (J) Close up of biforine and a druse behind it in connective of Syngonium podophyllum.
(K) Anther of Caladium bicolor, connective at either side. Pigmented bodies and biforine-like cells
in connective at lower right. Prisms barely visible in theca. (L) Anther of Xanthosoma sp, connective
on either side. Prisms visible in theca. (M–P) Close ups of prisms mixed with pollen in thecae of
(M) Dieffenbachia seguine, (N) Syngonium podophyllum, (O) Caladium bicolor, and (P) Xanthosoma sp.
(Q,R) Chewed synandrium of Ph. solimoesense, identical views under (Q) bright-field illumination
and (R) polarization. Because this species does not bleach easily, crystals are poorly visible in bright
field; many more crystals are visible by polarization. Micrographs H, M–P, and R were imaged by
polarization microscopy; all others are bright fi eld. Bar = 20 µm on I,J, and M–P; 200 µm on all others.
Abbreviations: bf, biforine or biforine-like cell; dr, druse; fl, fi lament; pb, pigmented body; po, pollen;
pr, prism; rb, raphide bundle; others as in Figure 1 from reference [88]”.



Crystals 2020, 10, 591 12 of 23

CaOx crystals in raphide shape are obtained in Lemna minor or duckweed, in both the root
cap and the root proper [86]. In a study performed in leaves of 14 species of the Araceae family,
i.e., Aglaonema modestum, Anthuriun andreanum, Arisaema atrorubens, Colocasia esculenta, Dieffenbachia
maculata, Hydrisme rivieri, Monstera deliciosa, Philodendron fenzlii, Pisita stratiotes, Scindapsus aureus,
Spathiphyllum commutatum, Symplocarpus foetidus, Syngonium podophyllum, and Zantedeschia aethiopica, it
was found that they formed CaOx crystals with four types of morphologies: druses, raphides, prisms,
and sand. Another species of this family is Amorphophallus titanum, commonly known as titan arum,
its flower has been deemed the largest flower in the world, as it can measure up to 3.06 m in height
(Figure 6A–C [89] and Figure 6D [90]). In this species, the morphology of the CaOx crystals in the
inflorescence has also been determined as clusters, raphides, and slender raphides, stout (Figure 7) [89].
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Figure 6. Amorphophallus titanum, species of the Araceae family Figure 6 A–C (original Figure 1 from
Raman et al., 2017 [89]) reproduced with permission. Figure 6D (original Figure 1 from Barthlott et al.,
2009 [90]) with permission. Original figure legend: “Pictures of Amorphophallus titanum inflorescence.
A—Stages of titan arum flowering; B—fully opened inflorescence; C—lower part of spathe cut open to
show the stamens and carpels (representing male and female flowers, respectively) studded on the
lower part of the spadix. ap- appendix, ff- female flowers/carpels, le- leaf, mf- male flowers/stamens,
pd- peduncle, pt- petiole, sp- spathe [89]; D—A world record flower: the fountain-like inflorescence
of a Titan arum with a height of 3.06 m in the Botanical Gardens Bonn in May 2003. This very plant
produced three simultaneous inflorescences in May 2006 (see Figure 2)”. [90].
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Figure 7. CaOx crystals in Amorphophallus titanium. (A,B) Cluster crystals. C–J) Raphides. (E,F) Slender
raphides. (G–J) Lemna type needles (all images of crystals are from the original Figure 5 from Raman
et al., 2017 [89]), reproduced with permission. Original figure legend: “Crystals of calcium oxalate
in Amorphophallus titanum inflorescence (A: polarized light microscopy; C,D: light microscopy; B,E–J:
SEM]. Cluster crystals (A,B) and raphides (C–J) are common in the spathe and female flowers. Slender
raphides of Psychotria type (E,F) and stout, Lemna type needles (G–J) are observed in the female flowers.
Image J shows raphide crystals dispersed in the stigmatic fluid. ci- crystal idioblast, ra- raphide crystal,
rb- raphide bundle, sp- stigmatic papillae. Bars: A,D = 50 µm; B,I = 5 µm; C = 200 µm; E,G,H,F,J = 20
µm”.

In the Xanthosoma species and in Colocasia spp., CaOx crystals with a morphology of raphide
bundles and intra-amylar crystals have been identified. Crystals were present in all organs of the
plant [91]. The fact that the species of this family present one or another morphotype and polymorph
indicates that the biomineralization process for their protection against the environment and their
ability to adapt to their natural habitat are characteristic of each species, independently of the family to
which they pertain.

Plants have evolved for many years and are one of the most efficient organisms on Earth that are
able to produce their own food taking light, water and some nutrients from soils. The mechanism
about calcium availability related to light exposure and oxalate anions produced from biochemical
processes open the possibility to investigate the effect of light and their role on the growth and form.

3. Morphological Chirality of Calcium Oxalate Crystals and Crystallographic Data

The stereochemistry is one of the areas of chemical research that allows to synthesize organic
molecules called enantiomers that, when comparing two crystals or two structures, they are mirror
images of each other. This chemical approach in synthesis lays on the fundamentals of modern
Chemistry. For shapes or molecular structures with the same composition, which cannot be
super-imposable by any of the two properties of symmetry namely translation or rotation, this
is the definition of chirality. It is worth mentioning that the chiral structure is not the same as the
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chiral morphology. In general, a chiral molecule will develop a chiral morphology in the crystal
shape. However, there are some molecules that are achiral in solution and become chiral in the solid
state (during crystal formation). These crystals develop chiral morphologies with hemihedral faces.
In plants, calcium oxalate an achiral molecule is one of the examples of this latter situation [92]. It
is clear, from the crystallographic point of view, that the crystal morphology does not reflect the
molecular symmetry. In some particular cases for crystals produced in specialized cells (idioblasts)
throughout the biomineralization processes the chirality can be induced by the presence of proteins,
polysaccharides [93,94] or different additives [95]. In the biomineralization processes, it is common
to observe biominerals that often exhibit chiral shapes. There are some investigations using atomic
force microscopy (AFM) that have used some synthetic amino acids as additives in the crystal growth
of calcium oxalate that have demonstrated the obtaining of two enantiomers, which have different
binding preferences to steps that are related by mirror symmetry. This contribution using AFM was
based on the hypothesis that the introduction of chiral molecules causes different stereochemical
matching between these amino acids and the mirror symmetry-related features present on the growing
surfaces [96]. On the other hand, calcium oxalate is synthesized in more than 200 plant families.
The different shapes and obtainment of specific morphologies have been theoretically predicted for
calcium oxalate monohydrate (whewellite) as well as for the specific evolution of those faces [97].
From the crystallographic point of view, calcium oxalate biominerals used to crystallize in two main
space groups. The monoclinic whewellite (CaOx monohydrate form) with the space group P21/c is the
kinetically form usually obtained when the plant has been exposed to highly stressful situations or high
supersaturation of calcium and oxalate ions. This monoclinic form has the following cell parameters: a
= 6.290 Å, b = 14.583 Å, c = 10.116 Å, Å α = 90◦, β = 109.46◦, γ = 90◦. On the other hand, the tetragonal
phase weddellite (CaOx dihydrate form) with space group I4/m is mostly obtained in diffusion control
in plants and it is the thermodynamically stable phase. The cell parameters of the tetragonal crystal are
a = 12.375 Å, b = 12.375 Å, c = 7.377 Å, Å α = β = γ = 90◦ [98].

4. The New Trends in Biomineralization Processes, the Role of Photoreceptors into Calcium
Uptake, and Their Influence on Growth of Plants and Form

In plants, visible light stimuli, for calcium accumulation in vacuoles, are converted into biological
signals by photoreceptor proteins, usually called phototropins [99]. This photoreception produces the
homeostasis of calcium in vacuoles. It is well known that phototropism involves a directional growth
of plants, toward or away from a light source in function of the intensity of the incident electromagnetic
radiation. There are different responses of the plants to light, since they are able not just to detect the
presence or absence of light, but also its quality, quantity, direction and duration. Photoreceptors more
commonly identified are phytochromes (PHY), cryptochromes (CRY), and phototropins (PHOT).

In Arabidopsis thaliana, it has been identified 13 photoreceptors, consisting of 5 PHY (A to
E), two CRY (1 and 2), two PHOT (1 and 2), and recently a single UVR8 photoreceptor [99,100].
PHY receptors are characterized for the photoreception of red/far-red light from the environment
and the subsequent adaptation of the plant growth and development, some of their functions
are involved in seed germination, seedling de-etiolation and shade avoidance [101]. CRY sense
omnidirectional blue-light and plays an important role in photomorphogenesis such as seedling
de-etiolation, and flowering induction under long-day photoperiods; moreover, CRY can also act as
chemical magnetoreceptors [102,103]. The UVR8 sense UV-B light and regulates directional bending by
affecting auxin signaling [104,105]. Phototropins are characteristic by their response to unidirectional
blue-light, usually through two components phototropin-1 (PHOT1) and phototropin-2 (PHOT2),
which makes more efficient the conversion of light in chemical energy through signal-transduction and
oligomerization. The well-known physiological responses associated to phototropins are stomatal
opening, leaf expansion and chloroplast relocation. This is a compelling research that deserves to be
thoroughly studied [106].
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4.1. Phototropins

The isolation of the first phototropin gene occurred in 1997 when Briggs group studied a
120 kD plant plasma membrane-associated protein: the NPH1 [107], which was lately renamed
PHOT1 [108,109]. This gene encodes a 996 amino acid protein that undergoes blue light-dependent
autophosphorylation and which was demonstrated to be essential for phototropic signal-transduction
pathways in Arabidopsis. PHOT1 (NP_001030814.1) is composed by two segments, the COOH-terminal
region that encodes a serine/threonine kinase, which contain 11 conserved sequence motifs characteristic
of protein kinases; and the NH2-terminal region, which includes two light-oxygen-voltage (LOV)
domains with ~110 amino acids each. A protein sharing ~80 % similarity with PHOT1, with a sequence
of 915 amino acids, originally named NPL1 and later designed as PHOT2 (NP_001318824.1) [110,111],
was demonstrated to act in a redundant manner with PHOT1, like blue-light receptors that mediate
physiological responses. One of the remarkable differences between PHOT1 and PHOT2 is their
photosensitivity, while the first one mediates both, root and hypocotyl phototropism in response
of low-fluence rate unilateral blue light (< 1 µmol.m−2s−1), PHOT 2 exhibit normal phototropism
under high-fluence rates (1–100 µmol.m−2s−1) [111]. The response to the fluence rates in Arabidopsis is
summarized as follows: Phototropins 1 and 2 are both involved in physiological and blue light fluence
response [112–116].

4.2. The Light-Oxygen-Voltage (LOVs) Domains

The LOV domains contain two similar motif sequences of ~110 amino acids, LOV1 and LOV2, and
they are members of the PAS (Per, ARNT, Sim) superfamily [117]. Their structure is almost identical
and comprises five antiparallel β-strands interconnected by two α-helices. In Arabidopsis PHOT1
comprise the residues 197–300 and 475–578 for LOV1 and LOV2 respectively, and 133–236 and 389–492
for LOV1 and LOV2 for PHOT2 [118]. Crystallization of Arabidopsis phototropins, can be reviewed for
LOV1 of Phot1 (2Z6c) and Phot2 (2z6d) in Nakasako research [104], where 1.2 Åand 0.8 Åresolutions
were achieved, respectively. For LOV2, Phot1 (4hhd) Halavaty reach a 2.75 Åresolution, and Phot2
(4eep) was resolved at 0.9 Åfor Christie [119–126]. In spite of the structural similarities between LOV1
and LOV2, the functions they show are quite different. Christie, et al. [124] indicates that LOV2 domain
act as a modulator that induces phosphorylation of the kinase domain [127], while Matsuoka, et al
suggest that LOV1 control the sensitivity of light regulation of LOV2 [104]. Besides that, LOV1 is
thought to act as a dimerization site as stablished by Nakasako et al [120]. Studies realized by Oide et
al shows that both, LOV1 and LOV2, contribute to the kinase activity and blue light conformational
changes in PHOT2 [121]. Moreover, it has been shown that quantum efficiencies of the photoreaction
are 10 and 2 times higher in LOV2 domain than in LOV1 [122,123].

4.3. The Flavin Mononucleotide Molecule and the Photocycle

The photoactivation of phototropins is mediated by the chromophore Flavin mononucleotide
(FMN) [108]. Each of the two LOV sensing domains found in the NH2-terminal half of the protein bind
stoichiometrically and non-covalently the FMN molecule in their ground state, i.e., under dark [125].
This is known as the Dark-state or (D-sate). The maximum absorption of D-state is found at 447
nm (also LOV447). Under light conditions, the photochemistry involved suggest the formation of an
FMN-thiol C(4a) adduct with a highly conserved cysteine (Cys) residue. Arabidopsis phot1 residues are
Cys-234 and Cys-512 [118,126], and phot2 residues are Cys-170 in LOV1 and Cys-426 in LOV2 [121].
The formation of the adduct functions as a molecular switch that transmits structural changes in the
LOV to the kinase domain [118]. Light drives, in less than 30 ns, the production of a highly reactive
triplet-state flavin (LOV660) which decays within 4 µs and leads to formation of a covalent bond
between the C(4a) carbon of the FMN chromophore and a conserved cysteine residue within the LOV
domain (LOV390 or S-state). The photoreaction process is fully reversible in darkness. The recovery of
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LOV domains follows a first order kinetic and occurs more rapidly for LOV1 than for LOV2. The half
time recovery for LOV2 is around ~50 s [128].

4.4. The Origin and Evolution of Phototropins

It has been shown that phototropins are present in all major land plants lineages, as well as in
green algae. In higher plants, two specialized phots are commonly found; however, it is believed that
ancient organisms containing light receptors could have just one general purpose photoreceptor. That
is the case of the livewort M. polymorpha, in which chloroplast avoidance and accumulation responses
obey to the presence of a single phototropin [129]. Phototropin phylogeny investigated by Li, et al
shows that the origin of phototropins is attributed to an ancestor of Viridipplantae, (land plants +

green algae), since they are present in all major land plant linages as well as in green algae, but not in
red algae, cryptophytes, haptophytes, or stramenopiles [130–132]. Adaptation of early land plants
depended directly on the availability of water, light duration and quality, and nutrients [133].

4.5. Calcium Uptake and Its Importance in Plant.Growth and Form

Calcium is one of the most important elements present in a variety of biominerals in the earth´s
crust along with some specific anions. Calcium carbonate is present in many marine and terrestrial
organisms (e.g., these species have formed shells as a way of protection against predators). Calcium
sulfate is also precursor of gypsum, calcium phosphate is the main component of bones forming
hydroxyapatite, calcium oxalate appears in plants as a protection against herbivory or insect attacks
or even as calcium´s accumulation system [134,135]. Additionally, there is a beneficial process when
adding ground limestone to acids soils to increase crop yields. All plants without calcium are unable
to grow or to complete their life cycles [134]. The mechanism for calcium uptake and its accumulation
in vacuoles as well as in the cytosol calcium homeostasis has been scarcely investigated in the last
thirty years [136]. The growth of calcium oxalate is mediated by cells; it might have genes involved in
the biomineralization processes. It is important to mention that there is a critical need for correlative
bio-physicochemical characterization of the full biomineralization process [49]. Additionally, there is a
lack of research about the role of calcium focused on the relationship photoreceptor-interacting proteins.
The photoreception is a phenomenon, which is initiated by two photoreceptors called cryptochromes
1 and 2 (CRY1, CRY2) and the non-phototropic hypocotyl 1 receptor (NPH1) as we described it on
second part of this review. The end terminal region of this last receptor contains a repeated motif of 110
aa, designated Light-Oxygen-Voltage domains LOV-1 and LOV-2 as we already mentioned. These two
domains of NPH1 bind flavin mononucleotide (FMN) and undergo a self-contained photocycle. The
receptor NPH1 regulates the avoidance movement of chloroplasts in response to high light intensities
of blue light. This receptor causes a transient increase in cytosolic Ca2+ as shown by Gross and
Marmé (1978), who investigated the dependency between ATP-dependent Ca2+ accumulation in the
microsomal fraction in plants [136]; this process showed that it can be controlled by white light in vitro.
One of the future applications of photoreceptors from plants combining optical and genetic approaches
will be the Optogenetics [137,138]. Nowadays, the importance of calcium as an essential element is
remarkable in many organisms. The biominerals where it is present, as well as the mechanisms that
explain the formation of a variety of biogenic minerals, are still under compelling investigations into
the world of the biomineralization processes.

5. Concluding Remark

Being able to understand why some plant species present only one type of CaOx crystals
morphology, whereas other species synthetize several morphologies and polymorphs is of crucial
relevance, because it is possible that this fact can be related with the biomineralization processes
performed or adapted by the plant to survive. However, above all, it will be interesting to understand
how the biomineralization process is achieved by all organisms, and how this process could be the site
of the chemical origin of life on Earth. There are three main biominerals that appear in plants namely
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calcium oxalate, calcium carbonate, and calcium phosphate. However, the existence of phytolites in
plants is a connection with the Precambrian time, where silica structures were very common in many
micro-organisms that still exist on Earth like the radiolarian and diatoms.

Our second conclusion is that the light is the most important environmental signal that regulates
calcium uptake related to the growth of plants and, in some way, their form. The role of all these light
receptors for both blue and red light induces changes in the membrane properties, gene expressions and
over-expression of proteins and polysaccharides related to calcium salts and formation of biominerals
as hybrid materials. It will be necessary in the near future to investigate the transduction pathways in
calcium signaling to solve big issues in the knowledge of plant physiology and most particularly the
formation of a variety of biocrystals in plants.
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