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Abstract

Food materials designated as ‘‘Generally Recognized as Safe’’ (GRAS) are attracting the attention of researchers in their
attempts to systematically identify compounds with putative health-related benefits. In particular, there is currently a great
deal of interest in exploring possible secondary benefits of flavor ingredients, such as those relating to health and wellness.
One step in this direction is the comprehensive characterization of the chemical structures contained in databases of
flavoring substances. Herein, we report a comprehensive analysis of the recently updated FEMA GRAS list of flavoring
substances (discrete chemical entities only). Databases of natural products, approved drugs and a large set of commercial
molecules were used as references. Remarkably, natural products continue to be an important source of bioactive
compounds for drug discovery and nutraceutical purposes. The comparison of five collections of compounds of interest was
performed using molecular properties, rings, atom counts and structural fingerprints. It was found that the molecular size of
the GRAS flavoring substances is, in general, smaller cf. members of the other databases analyzed. The lipophilicity profile of
the GRAS database, a key property to predict human bioavailability, is similar to approved drugs. Several GRAS chemicals
overlap to a broad region of the property space occupied by drugs. The GRAS list analyzed in this work has high structural
diversity, comparable to approved drugs, natural products and libraries of screening compounds. This study represents one
step towards the use of the distinctive features of the flavoring chemicals contained in the GRAS list and natural products to
systematically search for compounds with potential health-related benefits.

Citation: Medina-Franco JL, Martı́nez-Mayorga K, Peppard TL, Del Rio A (2012) Chemoinformatic Analysis of GRAS (Generally Recognized as Safe) Flavor
Chemicals and Natural Products. PLoS ONE 7(11): e50798. doi:10.1371/journal.pone.0050798

Editor: Paul Taylor, University of Edinburgh, United Kingdom

Received September 28, 2012; Accepted October 24, 2012; Published November 30, 2012

Copyright: � 2012 Medina-Franco et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the State of Florida, Executive Office of the Governor’s Office of Tourism, Trade, and Economic Development. The funder
had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: jmedina@tpims.org

Introduction

Natural products [1,2] and some food materials designated as

‘‘Generally Recognized as Safe’’ (GRAS) [3,4,5] are attractive

sources from which to identify molecules with potential health-

promoting effects and complement the chemical space of drugs

[6,7]. Flavoring substances in the GRAS list (those that comprise

discrete chemical entities) are attracting the attention of research-

ers to systematically analyze structural and physicochemical

properties of these compounds and to explore their potential

biological activities [8]. Identification of bioactive molecules in the

GRAS collection would suggest potential health benefits when

included in the human diet, as well as creating the possibility to

explore structural analogues of such compounds. Informative

comparisons of the chemical properties of GRAS and pharma-

ceutical compounds have been reported [8,9,10]. However,

despite the fact that several GRAS compounds are from natural

origin, a direct comparison between GRAS chemicals and natural

products databases has not yet been reported.

Natural products are particularly attractive sources from which

to identify lead compounds for novel targets [11,12] such as DNA

methyltransferase inhibitors, prohormone convertases [13,14] and

epigenetic targets that are relevant for preventive and therapeutic

interventions [15]. We have previously collected natural products

databases with chemical structures in the public domain [16]. A

comprehensive scaffold analysis revealed that the largest natural

products collection analyzed in that work was not the most diverse

[16]. It was also found that, in general, natural products databases

in the public domain have low molecule overlap. In addition to

benzene and acyclic compounds, flavones, coumarins, and

flavanones were identified as the most frequent molecular scaffolds

[16]. A next logical step, that is reported here, is the analysis of

physicochemical properties and comparison of chemical structures

using structural fingerprints.

Chemoinformatic analysis of compound libraries provides key

information with which to characterize the scaffold content,

molecular diversity, and coverage of chemical space [17]. Herein,

we report a comparative chemoinformatic analysis of GRAS

flavoring molecules and selected natural products databases in the

public domain. The chemical databases were compared using

diverse criteria including physicochemical properties, substructure,

atom counts, and structural fingerprints. Results are discussed in

the light of previous analyses reported for natural product

databases [12,18,19,20,21,22,23].
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Methods

Table 1 summarizes the compound libraries analyzed in this

work. Two distinct natural product databases with different

numbers of chemical structures were downloaded (August, 2012).

We considered a set of 2244 compounds based on the FEMA

GRAS list, complete thru GRAS 25 [24]. This was compiled in-

house by manually writing out chemical structures (in the case of

discrete chemical entities) and transcribing them into SMILES

format. An early version of this GRAS database is briefly

described in Peppard et al. [25]. Of note, chemical entities in

this set could have defined stereochemistry, ambiguous stereo-

chemistry or even be present as racemic mixtures. Therefore, the

set of GRAS molecules analyzed in this work contained no

stereochemical information and accordingly our chemoinformatic

analysis does not include chiral-sensitive descriptors (see below).

Two reference databases were used, namely; a collection of 1713

approved drugs obtained from DrugBank [26] and 10000

compounds obtained from Specs World Diversity Set 3

(SpecsWD3) that is a diverse collection of drug-like screening

compounds [27]. All structures were standardized and a washing

routine, as implemented in Molecular Operating Environment

[28], was applied to remove salts and neutralize molecules. Unique

structures, as determined by SMILES generated with Molecular

Operating Environment, were selected. All calculations of

physicochemical properties, ring and atom counts, and structure

fingerprints were performed with Canvas software [29,30].

Results and Discussion

Physicochemical Properties
The following drug-like properties commonly used to charac-

terize compound collections [21,31,32] were computed: the

octanol/water partition coefficient (AlogP), polar surface area

(PSA), hydrogen bond donors (HBD), hydrogen bond acceptors

(HBA), number of rotatable bonds (RB) and molecular weight

(MW). Figure 1 summarizes the distribution of the six properties

for each database using box-and-whisker plots. The three relevant

properties of polarity, flexibility and size are described by AlogP,

HBD, HBA, and PSA; RB; and MW, respectively. Figure 1

indicates that natural products from Specs have, in general,

properties more similar to drugs than do natural products from

Analyticon, except in terms of AlogP. Not surprisingly, the

standard deviation for Specs is smaller than that for Analyticon

due to the different sizes of the databases (Table 1). As expected,

the reference screening collection of drug-like molecules,

SpecsWD3, is the most similar to approved drugs, as exemplified

by DrugBank. The GRAS compounds are the smallest, least polar,

and least flexible cf. any of the five compound databases, as

measured by MW, PSA and RB, respectively. Remarkably, the

AlogP profile of GRAS compounds is the most similar to drugs

(e.g., same mean and very similar median; Figure 1). It has been

recognized that, among the properties related to the Rule-of-Five

[33], lipophilicity measured by logP is one of the most important

metrics in predicting human bioavailability [34]. Interestingly, the

distribution of molecular weights of the natural products from

Analyticon and Specs is comparable to the natural products

implemented in the ZINC database [21] although it is lower than

the molecular weight of natural products from other sources [19]

including the Traditional Chinese Medicine database [12]. The

overall distributions of the physicochemical properties of the

GRAS compounds are similar to those previously reported in

earlier work (subsets of 1882 and 1736 molecules) [8,9].

Distribution of Ring Counts
The importance of ring counts in drug development has been

discussed extensively [35,36] and employed to characterize

molecular databases [32]. It has been noted that ‘‘the fewer the

number of aromatic rings contained in an oral drug candidate, the

more developable that candidate is likely to be’’ and that more

than three aromatic rings in a molecule correlate with failure in

further stages of the development process [35]. More specifically,

Ritchie and Mcdonald found more than three rings affect the

expected range of values of key properties involved in drug

development such as aqueous solubility, lipophilicity, serum

albumin binding, cytochrome P450 3A4 isoform inhibition and

hERG inhibition. Further details are discussed elsewhere [35].

Figure 2 shows box-and-whisker plots corresponding to the

distribution of total numbers of rings and aromatic rings in the

present study. The plots in Figure 2 show that the natural products

databases have larger numbers of rings cf. the drugs. This is in

agreement with previous reports analyzing different databases

[19]. In sharp contrast, GRAS compounds have the smallest

number of rings (e.g., median of one ring as compared to three or

four for drugs, natural products, or the screening collection of

drug-like molecules). Similarly, GRAS showed the lowest number

of aromatic rings. The mean and median of the aromatic rings for

all compound databases analyzed in this work is lower than three

suggesting that, in general, all have an acceptable profile to

produce developable drug candidate molecules as proposed by

Ritchie and Macdonald [35]. Surprisingly, the diverse screening

collection SpecsWD3 has, on average, one more aromatic ring

than approved drugs and natural products from Analyticon and

Specs.

Visual Representation of the Chemical Space
The number of aromatic rings, along with the six properties

(AlogP, PSA, HBD, HBA, RB, MW) discussed above, were

employed to generate a visual representation of the chemical space

of the five databases. The visualization shown in Figure 3 was

obtained by means of principal component analysis (PCA) of the

Table 1. Compound databases analyzed in this work.

Database Source Size URL

GRAS Published FEMA GRAS data 2244 See text

Natural products Analyticon 2449 http://www.ac-discovery.com

Natural products Specs 467 http://www.specs.net

Approved drugs DrugBank 1713 http://www.drugbank.ca

General screening SpecsWD3 10000 http://www.specs.net

doi:10.1371/journal.pone.0050798.t001

GRAS Flavor Chemicals and Natural Products
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Figure 1. Distribution of six drug-like properties of the databases compared in this work. The yellow boxes enclose data points with
values within the first and third quartile; the black and blue triangles denote the mean and median distributions, respectively; the lines above and
below indicate the upper and lower adjacent values. The gray band within boxes represents the 95% confidence interval of the mean value (based on
the number of data points and StdDev). The red squares indicate outliers. Selected statistics of each distribution are also shown.
doi:10.1371/journal.pone.0050798.g001

GRAS Flavor Chemicals and Natural Products
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Figure 2. Box-and-whisker plots of the total ring count and aromatic ring count. The symbols and colors in the plots are the same as in
Figure 1.
doi:10.1371/journal.pone.0050798.g002
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seven auto-scaled properties. The two principal components

account for 95% of the variance. Figure 3A shows all libraries

within the same coordinates. For visual clarity, Figure 3 also

depicts each library individually, again using the same coordinates.

Table S1 in the Supporting Information summarizes the

corresponding loadings and eigenvalues for the first three PCs.

For the first PC, the larger loadings correspond to PSA followed by

HBA, whereas for the second PC the largest loadings correspond

to AlogP followed by the number of aromatic rings. The high

variance explained by the first two PCs (95%) provides a measure

of confidence, when analyzing the two-dimensional visualization

of chemical space, that it is a reasonable approximation of the full

seven-dimensions. This visualization shows that the GRAS

database covers a broad region of the property space occupied

by the drug molecules in DrugBank and the two natural products

databases. In addition, several compounds from GRAS densely

populate a relatively sparse area of the property space covered by

DrugBank and the other compound collections (lower right

quadrant of the PCA plot). The different coordinates along PC1

for several GRAS molecules are in agreement with the different

profile of primarily PSA, HBA, and number of aromatic rings as

compared to other databases (Figure 1 and 2 and Table S1). In

Figure 3 it is also remarkable that natural products from

Analyticon cover a broad area of the property space that is

consistent with the large standard deviation that this collection has

in several properties (Figure 1). In contrast, despite the fact that the

screening collection SpecsWD3 is the largest database, it covers

a much narrower area of the property space (with few if any

outliers) which is quite similar to the space of approved drugs. This

is in accord with the design of this database that mimics the

properties of currently approved drugs.

Distribution of Atom Counts
Compound databases were further characterized using counts

of carbon, nitrogen, oxygen, and sulfur atoms. Similar to the set of

Figure 3. Property space of five databases analyzed in this work obtained by PCA of seven (auto-scaled) molecular descriptors. The
first two PCs account for 95% of the variance. The loadings are summarized in Table S1: (A) all libraries; (B) GRAS; (C) natural products - Analyticon; (D)
natural products - Specs; (E) DrugBank and (F) SpecsWD3.
doi:10.1371/journal.pone.0050798.g003

Figure 4. Box-and-whisker plots of atom counts. The symbols and colors in the plots are the same as in Figure 1.
doi:10.1371/journal.pone.0050798.g004
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physicochemical properties discussed above, this set of atom

counts are commonly used to compare compound databases of

bioactive molecules and natural products [19]. In addition, the

number of carbon, nitrogen, oxygen, and sulfur atoms divided by

the number of heavy atoms (i.e., non-hydrogen atoms) in each

molecule (i.e., fraction of atom counts) was also analyzed. Figure 4

and Table S2 in the Supporting Information summarizes the

results, indicating that natural products from Analyticon and Specs

have larger numbers of carbon and, more pronounced, larger

numbers and fractions of oxygen atoms as compared to the drugs

database. Notably, natural products from Analyticon have a large

fraction of oxygen atoms (median and mean of 0.25 and 0.24,

respectively) as compared to other collections (median/mean

#0.17; Table S2). This is in agreement with analysis of other

collections of natural products recently reviewed by Lachance et al

[37]. Natural products from Specs have a slightly larger number

and fraction of nitrogen atoms than do natural products from

Analyticon. Both natural products collections have lower numbers

and fractions of nitrogen and sulfur atoms cf. the drug database. In

fact, natural products have very few sulfur atoms. This is also

consistent with the analysis of other natural products databases

[37]. In contrast, the reference screening collection SpecsWD3 has

similar numbers and fractions of carbon and nitrogen atoms as

compared to the drugs database, thought it has, on average,

slightly fewer oxygen and slightly more sulfur atoms. The slightly

higher number of sulfur atoms in the screening collection can be

attributed to the synthetic origin of these molecules that frequently

incorporates reagents containing sulfur atoms [19]. GRAS has the

lowest number of atom counts and this is not surprising because of

the smaller molecular size on average. The fraction of atom counts

relative to all heavy atoms (Table S2) reveals, however, that GRAS

compounds have a larger fraction of carbon atoms than do the

drugs in DrugBank and the screening collection. Similarly, GRAS

molecules have a slightly higher fraction of oxygen atoms than

molecules in DrugBank and SpecsWD3. GRAS, DrugBank, and

SpecsWD3 have similar fraction of sulfur atoms.

Comparison with Structure Fingerprints
Intra-library similarity. The intra-library similarity of the

five compound collections was measured using Molecular ACCess

System (MACCS) keys (155-bits) and radial fingerprints available

in Canvas. The latter are also known as extended connectivity

fingerprints [38]. Two representations of different design were

employed in order to reduce the well-known dependence of

chemical space on molecular representation [39,40]: MACCS keys

are a pre-defined set of 155 structural keys whereas radial

fingerprints entail growing a set of fragments radially from each

heavy atom over a series of iterations [38]. Table 2 summarizes the

statistics of the distribution of all pairwise similarity values

computed using the Tanimoto coefficient [41,42] and the two

fingerprint representations. The number of pairwise comparisons

range from 108811 in the case of natural products from Specs to

1466328 for DrugBank. For the GRAS database and natural

products from Analyticon, and SpecsWD3, random samples of

1000 molecules each (499500 pairwise comparisons) were consid-

ered. It has been observed in several studies that random samples

of 1000 compounds is generally representative of the structural

diversity computed with structure fingerprints [21,43]. The

similarity values computed with MACCS keys and radial

fingerprints have different magnitudes, being larger when com-

puted with the former method. This observation is in agreement

with a number of previous studies comparing various databases

from different sources [40,44]. Table 2 shows that all five

compound databases have high structural diversity, e.g., median

and mean MACCS keys/Tanimoto similarity #0.45. Among the

natural products, the collection from Specs is more diverse than

the set from Analyticon (based on MACCS keys). This trend is

opposite to the scaffold diversity recently reported where natural

products from Analyticon showed larger scaffold diversity than

Specs [16]. This result indicates that the larger structural diversity

of Specs is due, in part, to the side chains around the core

scaffolds. Also, this result is in agreement with the observation that

high structural diversity using whole structures does not necessarily

correlate with high scaffold diversity. Based on MACCS keys, the

GRAS collection showed the greatest structural diversity (median

and mean MACCS keys/Tanimoto similarity of 0.26 and 0.29,

respectively).

A visual representation of the structural diversity of each

database is presented in Figure 5. The figure shows a rectangular

MACCS keys-based Kohonen map or self-organizing map [45]

generated with Canvas software. The map was applied for all

compounds comprising the five libraries in Table 1 (16873

compounds). The self-organizing maps clearly depict the large

structural diversity of all databases.

Table 2. Summary of the intra-library similarity computed with MACCS keys and radial fingerprints.

Fingerprint Database Max Q3a Median Q1b Min U95c Mean L95c StdDev

MACCS GRAS 1.00 0.39 0.26 0.16 0.00 0.29 0.29 0.29 0.18

keys AnalyticonNP 1.00 0.55 0.44 0.34 0.02 0.45 0.45 0.45 0.16

SpecsNP 1.00 0.47 0.36 0.28 0.06 0.39 0.39 0.39 0.15

DrugBank 1.00 0.37 0.29 0.22 0.00 0.30 0.30 0.30 0.12

SpecsWD3 1.00 0.41 0.33 0.26 0.00 0.34 0.34 0.34 0.12

Radial GRAS 1.000 0.088 0.056 0.032 0.000 0.066 0.066 0.066 0.049

AnalyticonNP 0.683 0.060 0.045 0.031 0.000 0.048 0.048 0.048 0.026

SpecsNP 0.662 0.060 0.042 0.025 0.000 0.046 0.046 0.046 0.033

DrugBank 1.000 0.060 0.044 0.030 0.000 0.047 0.047 0.047 0.026

SpecsWD3 0.529 0.085 0.067 0.051 0.000 0.070 0.070 0.070 0.027

aThird quartile.
bFirst quartile.
c95% confidence of the mean upper (U95) and lower (L95) limits.
doi:10.1371/journal.pone.0050798.t002

GRAS Flavor Chemicals and Natural Products
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Comparison of chemical structures with approved

drugs. The molecular databases were also compared to drugs

using the same MACCS keys and radial fingerprints employed to

measure intra-library similarity. For each compound in DrugBank

the maximum MACCS keys and radial similarity were determined

and compared to all molecules in the test database using the

Figure 5. 25625 Self-Organizing-Maps for all five libraries and each library independently. Cells are colored by population, with light
yellow for empty cells, and red for cells containing 24 or more compounds. The shading of cell borders indicates the distance between adjacent cells;
darker borders indicate larger distance.
doi:10.1371/journal.pone.0050798.g005
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Tanimoto coefficient. Table 3 summarizes the distribution of 1713

similarity values that represent the similarity of the nearest-

neighbor (maximum similarity) of the molecules in a given

database to each molecule in the set of approved drugs. Values

in Table 3 correspond to the statistics of the nearest-neighbors

curves that are frequently used to compare compound databases

[12]. Despite the fact that the values have different magnitude (see

above), both fingerprints indicate that SpecsWD3 is relatively

speaking the most similar collection to drugs, as it has the highest

similarity values computed using MACCS and radial fingerprints

(Table 3). However, although there is at least one molecule in the

SpecsWD3 database with MACCS keys and radial fingerprint

representation identical to that of a drug compound (as indicated

by the maximum similarity of one), most of the compounds from

drugs have different chemical structures as indicated by the

median, mean and third quartile of the MACCS keys similarity

values (Q3 = 0.78). In other words, the nearest-neighbor (closest

molecule) of SpecsWD3 to 75% of the drugs has MACCS keys/

Tanimoto similarity of 0.78. Based on experience and several

reports in the literature, it is well-known that a pair of compounds

with MACCS keys/Tanimoto similarity lower than 0.8 can be

considered as being dissimilar by a medicinal or experimental

chemist. Taken together, the results in Table 3 indicate that all

four collections compared to drugs have several molecules with

novel chemical structures relative to drugs.

The second closest database to drugs depends on the fingerprint

representation; based on MACCS keys, natural products from

Analyticon are the second closest compounds to drugs while, based

on radial fingerprints, GRAS is the second closest database.

Natural products from Specs are, in general, the compounds with

the chemical structures most different from drugs. It should be

emphasized that the comparison of the databases using structural

fingerprints is different from the comparison of the databases using

physicochemical properties or ring counts discussed above. Thus,

molecules with different chemical structures can have similar

properties. In other words, compounds collections can be drug-like

in terms of properties but can have novel chemistries. This is

clearly illustrated by SpecsWD3 which has, in general, different

chemical structures from drugs but similar physicochemical

properties.

It is worth mentioning that a deeper understanding of the

GRAS and natural compounds collections in terms of their

bioactivity profiles might conveniently be obtained using a variety

of other computer-aided drug design approaches, in particular

docking or pharmacophore screening [46,47,48]. In this context,

the growing availability of three-dimensional structures of target

proteins raises the possibility of deploying these techniques in

search of GRAS or natural compounds using ‘target-fishing’

approaches [49]. This is also of clear interest for elucidating the

polypharmacological properties of these collections for their role as

dietary and nutraceutical components that in many clinical,

physiopathological and epidemiological studies have proven to be

either detrimental or beneficial to human health.

Conclusions
We report a comparison of the discrete chemical entities within

the FEMA GRAS list of flavoring substances with natural

products, approved drugs and a large library of screening

compounds using different and complementary criteria. We

conclude that GRAS molecules have distinct molecular properties

and a lipophilicity profile remarkably similar to approved drugs.

The set of GRAS compounds analyzed in this work have a high

structural diversity which is comparable to the high structural

diversity of drugs, natural products, and screening molecules.

Natural products databases from different sources differ in

physicochemical properties and structural diversity and this result

complements previous conclusions derived from scaffold analysis.

These results further emphasize the convenience of using more

than one natural product database. By doing so, a broader area in

chemical space is covered during experimental and computational

screening. Results of this work clearly showed that a compound

library with high structural diversity does not necessarily have

broad coverage of the property space. The overall low toxicity of

the FEMA GRAS list of flavoring substances (considering the

quantities and presentations allowed for human consumption), and

the well-known relevance of natural products in drug discovery,

make these compounds libraries attractive to systematically

identify compounds with putative health-related benefits. This

work represents a step further in the growing field of Food

Informatics [50]. The overall small size of the FEMA GRAS list of

flavoring substances raises the question of the relationship between

these molecules and other molecular databases such as fragment

libraries or collections of lead-like molecules. Such relationships

will be fully addressed in a follow up work. Other perspective of

this work is to extend the comparison of the chemical databases

using additional atom counts, such as halogens, and properties

Table 3. Summary of the comparison between DrugBank and the other four databases computed with MACCS keys and radial
fingerprints.a

Fingerprint Database Max Q3b Median Q1c Min U95d Mean L95d StdDev

MACCS GRAS 1.00 0.68 0.58 0.51 0.25 0.61 0.61 0.60 0.14

keys NPAnalyticon 1.00 0.71 0.63 0.55 0.19 0.65 0.64 0.64 0.14

SpecsNP 1.00 0.67 0.59 0.52 0.17 0.61 0.61 0.60 0.14

SpecsWD3 1.00 0.78 0.71 0.67 0.29 0.72 0.72 0.71 0.10

Radial GRAS 1.00 0.17 0.14 0.11 0.06 0.17 0.16 0.16 0.12

NPAnalyticon 1.00 0.15 0.12 0.11 0.04 0.14 0.14 0.13 0.07

SpecsNP 1.00 0.13 0.11 0.09 0.03 0.12 0.12 0.11 0.05

SpecsWD3 1.00 0.19 0.15 0.12 0.05 0.17 0.16 0.16 0.07

aStatistics correspond to the maximum structure similarity to different compound databases to DrugBank.
bThird quartile.
cFirst quartile.
d95% confidence of the mean upper (U95) and lower (L95) limits.
doi:10.1371/journal.pone.0050798.t003
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related to absorption, distribution, metabolism, and elimination

(ADME).

Supporting Information

Table S1 Loadings for the first three principal components of

the property space of five databases.

(DOC)

Table S2 Counts of fraction of atoms.

(DOC)
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